During either a static or dynamic apnea, oxygen is delivered to vital organs, i.e., the brain and heart, and there is a compensatory reduction of oxygen consumption in peripheral tissues.
View Article and Find Full Text PDFMaximal static dry, that is, on land, apneas (breath-holds) result in severe hypoxemia and hypercapnia and have easy-going and struggle phases. During the struggle phase, the respiratory muscles involuntarily contract against the closed glottis in increasing frequency and magnitude, that is, involuntary breathing movements (IBMs). IBMs during maximal static apnea have been suggested to fatigue respiratory muscles, but this has yet to be measured.
View Article and Find Full Text PDFThe presented Review is focused on the latest research in the field of inorganic chemistry performed by the van Eldik group and his collaborators. The first part of the manuscript concentrates on the interaction of nitric oxide and its derivatives with biologically important compounds. We summarized mechanistic information on the interaction between model porphyrin systems (microperoxidase) and NO as well as the recent studies on the formation of nitrosylcobalamin (CblNO).
View Article and Find Full Text PDFPreterm birth occurs in 10% of all live births and creates challenges to neonatal life, which persist into adulthood. Significant previous work has been undertaken to characterize and understand the respiratory and cardiovascular sequelae of preterm birth, which are present in adulthood, i.e.
View Article and Find Full Text PDFIntroduction: Measurement of the work of breathing (Wb) during exercise provides useful insights into the energetics and mechanics of the respiratory muscles across a wide range of minute ventilations. The methods and analytical procedures used to calculate the Wb during exercise have yet to be critically appraised in the literature.
Purpose: The aim of this systematic review was to evaluate the quality of methods used to measure the Wb during exercise in the available literature.
J Appl Physiol (1985)
September 2021
The mechanical work of breathing (Wb) is an insightful tool used to assess respiratory mechanics during exercise. There are several different methods used to calculate the Wb, however, each approach having its own distinct advantages/disadvantages. To date, a comprehensive assessment of the differences in the components of Wb between these methods is lacking.
View Article and Find Full Text PDFThis review covers highlights of the work performed in the van Eldik group on inorganic reaction mechanisms over the past two decades in the form of a personal journey. Topics that are covered include, from NO to HNO chemistry, peroxide activation in model porphyrin and enzymatic systems, the wonder-world of Ru(edta) chemistry, redox chemistry of Ru(iii) complexes, Ru(ii) polypyridyl complexes and their application, relevant physicochemical properties and reaction mechanisms in ionic liquids, and mechanistic insight from computational chemistry. In each of these sections, typical examples of mechanistic studies are presented in reference to related work reported in the literature.
View Article and Find Full Text PDFThe focus of this article is an examination of chemical reaction mechanisms in ionic liquids. These mechanisms are compared with those pertaining to the same reactions carried out in conventional solvents. In cases where the mechanisms differ, attempts to provide an explanation in terms of the chemical and physicochemical properties of the reactants and of the components of the ionic liquids are described.
View Article and Find Full Text PDFSpectroscopic, thermodynamic, and kinetic measurements have been made on aqueous solutions of copper(II) complexes of hexamethylated tren and trimethylated tren (one methylation per primary amine group of tren) with the objective of correlating the influence of geometry (trigonal bipyramidal, evident from UV/vis spectroscopy) and N-alkyl substitution in the ligand on these inherent properties. At 25.0 degrees C the protonation constants of Me(3)tren are not significantly different from those of tren and Me(6)tren, and the stability constant for the Cu(II) complex is of the same order of magnitude as that for the [Cu(tren)(H(2)O)](2+) complex ion.
View Article and Find Full Text PDF