Several coastal ecosystems-most notably mangroves and tidal marshes-exhibit biogenic feedbacks that are facilitating adjustment to relative sea-level rise (RSLR), including the sequestration of carbon and the trapping of mineral sediment. The stability of reef-top habitats under RSLR is similarly linked to reef-derived sediment accumulation and the vertical accretion of protective coral reefs. The persistence of these ecosystems under high rates of RSLR is contested.
View Article and Find Full Text PDFMangrove forests provide many ecosystem services but are among the world's most threatened ecosystems. Mangroves vary substantially according to their geomorphic and sedimentary setting; while several conceptual frameworks describe these settings, their spatial distribution has not been quantified. Here, we present a new global mangrove biophysical typology and show that, based on their 2016 extent, 40.
View Article and Find Full Text PDFEstuaries on wave-dominated coasts generally comprise three sedimentary environments: fluvial sands and gravels derived from the catchment; marine sands characteristic of the beaches and nearshore; and silts and clays that accumulate in the sheltered central basin. Estuarine transition to deltaic form occurs when geomorphological maturity is achieved during coastal evolution. Sedimentary plains become infilled and a narrow channel connects the catchment and facilitates the transport of fluvial sediments to the coast.
View Article and Find Full Text PDFCoastal wetlands (mangrove, tidal marsh and seagrass) sustain the highest rates of carbon sequestration per unit area of all natural systems, primarily because of their comparatively high productivity and preservation of organic carbon within sedimentary substrates. Climate change and associated relative sea-level rise (RSLR) have been proposed to increase the rate of organic-carbon burial in coastal wetlands in the first half of the twenty-first century, but these carbon-climate feedback effects have been modelled to diminish over time as wetlands are increasingly submerged and carbon stores become compromised by erosion. Here we show that tidal marshes on coastlines that experienced rapid RSLR over the past few millennia (in the late Holocene, from about 4,200 years ago to the present) have on average 1.
View Article and Find Full Text PDFIn 1842 Charles Darwin claimed that vertical growth on a subsiding foundation caused fringing reefs to transform into barrier reefs then atolls. Yet historically no transition between reef types has been discovered and they are widely considered to develop independently from antecedent foundations during glacio-eustatic sea-level rise. Here we reconstruct reef development from cores recovered by IODP Expedition 310 to Tahiti, and show that a fringing reef retreated upslope during postglacial sea-level rise and transformed into a barrier reef when it encountered a Pleistocene reef-flat platform.
View Article and Find Full Text PDF