The kidney proximal tubule (PT) mediates renal drug elimination in vivo and is a major site of drug-induced toxicity. To reliably assess drug efficacy, it is crucial to construct a model in which PT functions are replicated. Current animal studies have proven poorly predictive of human outcome.
View Article and Find Full Text PDFFibrosis is a common pathological feature of chronic disease. Deletion of the NF-κB subunit c-Rel limits fibrosis in multiple organs, although the mechanistic nature of this protection is unresolved. Using cell-specific gene-targeting manipulations in mice undergoing liver damage, we elucidate a critical role for c-Rel in controlling metabolic changes required for inflammatory and fibrogenic activities of hepatocytes and macrophages and identify Pfkfb3 as the key downstream metabolic mediator of this response.
View Article and Find Full Text PDFTransporter expression, determined by quantitative proteomics, together with PBPK models is a promising approach for in vitro-to-in vivo extrapolation (IVIVE) of transporter-mediated drug clearance. OCT2-expressing HEK293 and MDCKII cells were used to predict in vivo renal secretory clearance (CL) of metformin. [C]-Metformin uptake clearance in OCT2-expressing cells was determined and scaled to in vivo CL by using OCT2 expression in the cells versus the human kidney cortex.
View Article and Find Full Text PDFIn vitro-in vivo extrapolation of drug metabolism data obtained in enriched preparations of subcellular fractions rely on robust estimates of physiologically relevant scaling factors for the prediction of clearance in vivo. The purpose of the current study was to measure the microsomal and cytosolic protein per gram of kidney (MPPGK and CPPGK) in dog and human kidney cortex using appropriate protein recovery marker and evaluate functional activity of human cortex microsomes. Cytochrome P450 (CYP) content and glucose-6-phosphatase (G6Pase) activity were used as microsomal protein markers, whereas glutathione-S-transferase activity was a cytosolic marker.
View Article and Find Full Text PDFProtein expression of renal uptake and efflux transporters was quantified by quantitative targeted proteomics using the surrogate peptide approach. Renal uptake transporters assessed in this study included organic anion transporters (OAT1-OAT4), organic cation transporter 2 (OCT2), organic/carnitine cation transporters (OCTN1 and OCTN2), and sodium-glucose transporter 2 (SGLT2); efflux transporters included P-glycoprotein, breast cancer resistance protein, multidrug resistance proteins (MRP2 and MRP4), and multidrug and toxin extrusion proteins (MATE1 and MATE2-K). Total membrane was isolated from the cortex of human kidneys (N = 41).
View Article and Find Full Text PDFABC transporters play an important role in the disposition of avermectins in several animal species. In this study the interactions of three key avermectins, abamectin, emamectin and ivermectin, with human and mouse homologues of MDR1 (ABCB1/Abcb1a) and MRP (ABCC/Abcc), transporters endogenously expressed by human SH-SY5Y and mouse N2a neuroblastoma cells were investigated. In both cell lines, retention of the fluorescent dye H33342 was found to be significantly increased in the presence of avermectins and cyclosporin A.
View Article and Find Full Text PDFAR42J-B-13 (B-13) cells form hepatocyte-like (B-13/H) cells in response to glucocorticoid treatment. To establish its utility in toxicity and genotoxicity screening, cytochrome P450 (CYP) induction, susceptibility to toxins, and transporter gene expression were examined. Conversion to B-13/H cells resulted in expression of male-specific CYP2C11 and sensitivity to methapyrilene.
View Article and Find Full Text PDFThere is considerable interest in the use of multi-potent stem cells in kidney tissue regeneration. We studied if spermatogonial stem cells have the ability to undergo kidney differentiation. Spermatogonial stem cell differentiation was induced using in vitro and ex vivo co-culture techniques.
View Article and Find Full Text PDFActinomycin D plays a key role in the successful treatment of Wilms tumour. However, associated liver toxicities remain a drawback to potentially curative treatment. We have used MDCKII cells over-expressing ABCB1, ABCC1, ABCC2 and ABCG2, alongside knockout mouse models to characterise actinomycin D transport and its impact on pharmacokinetics.
View Article and Find Full Text PDFAcquiring a mechanistic understanding of the processes underlying the renal clearance of drug molecules in man has been hampered by a lack of robust in vitro models of human proximal tubules. Several human renal epithelial cell lines derived from the renal cortex are available, but few have been characterised in detail in terms of transporter expression. This includes the HK-2 proximal tubule cell line, which has been used extensively as a model of nephrotoxicity.
View Article and Find Full Text PDFThe aim of this study was to determine whether primary human tubular cell monolayers could provide a powerful tool with which to investigate the renal proximal tubular handling of xenobiotics. Human proximal and distal tubule/collecting duct cells were grown as monolayers on permeable filter supports. After 10 days in culture, proximal tubule cells remained differentiated and expressed a wide palette of transporters at the mRNA level including NaPi-IIa, SGLT1, SGLT2, OCT2, OCTN2, OAT1, OAT3, OAT4, MDR1, MRP2 and BCRP.
View Article and Find Full Text PDFRosuvastatin is a potent HMG-CoA reductase inhibitor that has proven to be effective in the treatment of dyslipidemia. Rosuvastatin is cleared from the body by both biliary and renal clearance, the latter believed to be due to active tubular secretion. Whereas the mechanisms of hepatic clearance of rosuvastatin are well documented, those of renal clearance are not.
View Article and Find Full Text PDFBackground: Cyclosporine (INN, ciclosporin) increases the systemic exposure of all statins. Therefore rosuvastatin pharmacokinetic parameters were assessed in an open-label trial involving stable heart transplant recipients (> or =6 months after transplant) on an antirejection regimen including cyclosporine. Rosuvastatin has been shown to be a substrate for the human liver transporter organic anion transporting polypeptide C (OATP-C).
View Article and Find Full Text PDFBackground: Coadministration of statins and gemfibrozil is associated with an increased risk for myopathy, which may be due in part to a pharmacokinetic interaction. Therefore the effect of gemfibrozil on rosuvastatin pharmacokinetics was assessed in healthy volunteers. Rosuvastatin has been shown to be a substrate for the human hepatic uptake transporter organic anion transporter 2 (OATP2).
View Article and Find Full Text PDF