Preclinical and clinical studies have evidenced that effective targeted therapy treatment against receptor tyrosine kinases (RTKs) in different solid tumor paradigms is predicated on simultaneous inhibition of both the PI3K and MEK intracellular signaling pathways. Indeed, re-activation of either pathway results in resistance to these therapies. Recently, oncogenic phosphatase SHP2 inhibitors have been developed with some now reaching clinical trials.
View Article and Find Full Text PDFReoccurring/high-risk neuroblastoma (NB) tumors have the enrichment of non-RAS/RAF mutations along the mitogen-activated protein kinase (MAPK) signaling pathway, suggesting that activation of MEK/ERK is critical for their survival. However, based on preclinical data, MEK inhibitors are unlikely to be active in NB and have demonstrated dose-limiting toxicities that limit their use. Here, we explore an alternative way to target the MAPK pathway in high-risk NB.
View Article and Find Full Text PDFVenetoclax is a small molecule inhibitor of the prosurvival protein BCL-2 that has gained market approval in BCL-2-dependent hematologic cancers including chronic lymphocytic leukemia and acute myeloid leukemia. Neuroblastoma is a heterogenous pediatric cancer with a 5-year survival rate of less than 50% for high-risk patients, which includes nearly all cases with amplified We previously demonstrated that venetoclax is active in -amplified neuroblastoma but has limited single-agent activity in most models, presumably the result of other pro-survival BCL-2 family protein expression or insufficient prodeath protein mobilization. As the relative tolerability of venetoclax makes it amenable to combining with other therapies, we evaluated the sensitivity of -amplified neuroblastoma models to rational combinations of venetoclax with agents that have both mechanistic complementarity and active clinical programs.
View Article and Find Full Text PDFSynovial sarcoma (SS) is frequently diagnosed in teenagers and young adults and continues to be treated with polychemotherapy with variable success. The SS18-SSX gene fusion is pathognomonic for the disease, and high expression of the anti-apoptotic BCL-2 pathologically supports the diagnosis. As the oncogenic SS18-SSX fusion gene itself is not druggable, BCL-2 inhibitor-based therapies are an appealing therapeutic opportunity.
View Article and Find Full Text PDFis amplified in 20% to 25% of neuroblastoma, and -amplified neuroblastoma contributes to a large percent of pediatric cancer-related deaths. Therapy improvements for this subtype of cancer are a high priority. Here we uncover a MYCN-dependent therapeutic vulnerability in neuroblastoma.
View Article and Find Full Text PDFPurpose: It was recently demonstrated that the translocation contributes to the hypersensitivity of Ewing sarcoma to PARP inhibitors, prompting clinical evaluation of olaparib in a cohort of heavily pretreated Ewing sarcoma tumors. Unfortunately, olaparib activity was disappointing, suggesting an underappreciated resistance mechanism to PARP inhibition in patients with Ewing sarcoma. We sought to elucidate the resistance factors to PARP inhibitor therapy in Ewing sarcoma and identify a rational drug combination capable of rescuing PARP inhibitor activity.
View Article and Find Full Text PDFEGFR inhibitors (EGFRi) are effective against -mutant lung cancers. The efficacy of these drugs, however, is mitigated by the outgrowth of resistant cells, most often driven by a secondary acquired mutation in EGFR, We recently demonstrated that can arise during treatment; it follows that one potential therapeutic strategy to thwart resistance would be identifying and eliminating these cells [referred to as drug-tolerant cells (DTC)] prior to acquiring secondary mutations like We have developed DTCs to EGFRi in -mutant lung cancer cell lines. Subsequent analyses of DTCs included RNA-seq, high-content microscopy, and protein translational assays.
View Article and Find Full Text PDF