Publications by authors named "Colin Cerretani"

Purpose: Dry-eye disease, an increasingly prevalent ocular-surface disorder, significantly alters tear physiology. Understanding the basic physics of tear dynamics in healthy and dry eyes benefits both diagnosis and treatment of dry eye. We present a physiological-based model to describe tear dynamics during blinking.

View Article and Find Full Text PDF

Tear-film instability is widely believed to be a signature of eye health. When an interblink is prolonged, randomly distributed ruptures occur in the tear film. "Black spots" and/or "black streaks" appear in 15 to 40 s for normal individuals.

View Article and Find Full Text PDF

Water-evaporation reduction by duplex-oil films is especially important to understand the physiology of the human tear film. Secreted lipids, called meibum, form a duplex film that coats the aqueous tear film and purportedly reduces tear evaporation. Lipid-layer deficiency is correlated with the occurrence of dry-eye disease; however, in-vitro experiments fail to show water-evaporation reduction by tear-lipid duplex films.

View Article and Find Full Text PDF

Purpose: We explore the unique rheological and structural properties of human and bovine meibomian lipids to provide insight into the physical behavior of the human tear-film lipid layer (TFLL).

Methods: Bulk rheological properties of pooled meibomian lipids were measured by a commercial stress-controlled rheometer; a home-built interfacial stress rheometer (ISR) probed the interfacial viscoelasticity of spread layers of meibomian lipids. Small- and wide-angle x-ray scattering detected the presence and melting of dispersed crystal structures.

View Article and Find Full Text PDF

In addition to improving oxygen permeability, modern silicone-hydrogel (SiHy) soft contact lenses (SCLs) exceed a limiting diffusive ion permeability to aqueous sodium chloride. Below the ion-permeability threshold, siloxane-based SCLs are prone to bind against the corneal epithelium. Salt permeability is argued to reflect indirectly water hydraulic permeability.

View Article and Find Full Text PDF

Meibum is the primary component of the tear film lipid layer. Thought to play a role in tear film stabilization, understanding the physical properties of meibum and how they change with disease will be valuable in identifying dry eye treatment targets. Grazing incidence X-ray diffraction and X-ray reflectivity were applied to meibum films at an air-water interface to identify molecular organization.

View Article and Find Full Text PDF