Publications by authors named "Colin Carpenter"

Color variation is a frequent evolutionary substrate for camouflage in small mammals, but the underlying genetics and evolutionary forces that drive color variation in natural populations of large mammals are mostly unexplained. The American black bear, Ursus americanus (U. americanus), exhibits a range of colors including the cinnamon morph, which has a similar color to the brown bear, U.

View Article and Find Full Text PDF

Objective: To quantify the clinical performance of a machine learning (ML) algorithm for organ-at-risk (OAR) dose prediction for lung stereotactic body radiation therapy (SBRT) and estimate the treatment planning benefit from having upfront access to these dose predictions.

Methods: ML models were trained using multi-center data consisting of 209 patients previously treated with lung SBRT. Two prescription levels were investigated, 50 Gy in five fractions and 54 Gy in three fractions.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to create an AI clinical decision support system that predicts radiation doses to specific parts of the mandible using CT scans before planning radiation therapy for head and neck cancer.
  • Using data from 106 patients, the AI model demonstrated impressive predictive capabilities, with a positive predictive value of 0.95 and a negative predictive value of 0.88, and showed strong correlation with estimates from an experienced oncologist.
  • The findings indicate that the AI system improves the accuracy of predicting radiation dose to dental structures in patients undergoing radiation therapy, highlighting its potential role in enhancing treatment planning.
View Article and Find Full Text PDF

Purpose: Cardiac toxicity is a well-recognized risk after radiation therapy (RT) in patients with non-small cell lung cancer (NSCLC). However, the extent to which treatment planning optimization can reduce mean heart dose (MHD) without untoward increases in lung dose is unknown.

Methods And Materials: Retrospective analysis of RT plans from 353 consecutive patients with locally advanced NSCLC treated with intensity modulated RT (IMRT) or 3-dimensional conformal RT.

View Article and Find Full Text PDF

Background And Purpose: Volumetric modulated arc therapy (VMAT) planning for head and neck cancer is a complex process. While the lowest achievable dose for each individual organ-at-risk (OAR) is unknown , artificial intelligence (AI) holds promise as a tool to accurately estimate the expected dose distribution for OARs. We prospectively investigated the benefits of incorporating an AI-based decision support tool (DST) into the clinical workflow to improve OAR sparing.

View Article and Find Full Text PDF

Artificial intelligence (AI) is emerging as a technology with the power to transform established industries, and with applications from automated manufacturing to advertising and facial recognition to fully autonomous transportation. Advances in each of these domains have led some to call AI the "fourth" industrial revolution [1]. In healthcare, AI is emerging as both a productive and disruptive force across many disciplines.

View Article and Find Full Text PDF

Previously, American black bears (Ursus americanus) were thought to follow the pattern of female philopatry and male-biased dispersal. However, recent studies have identified deviations from this pattern. Such flexibility in dispersal patterns can allow individuals greater ability to acclimate to changing environments.

View Article and Find Full Text PDF

Background And Purpose: Clinical decision support systems are a growing class of tools with the potential to impact healthcare. This study investigates the construction of a decision support system through which clinicians can efficiently identify which previously approved historical treatment plans are achievable for a new patient to aid in selection of therapy.

Material And Methods: Treatment data were collected for early-stage lung and postoperative oropharyngeal cancers treated using photon (lung and head and neck) and proton (head and neck) radiotherapy.

View Article and Find Full Text PDF

Purpose: Flexible radioluminescence imaging (Flex-RLI) is an optical method for imaging F-fluorodeoxyglucose (FDG)-avid tumors. The authors hypothesize that a gadolinium oxysulfide: terbium (GOS:Tb) flexible scintillator, which loosely conforms to the body contour, can enhance tumor signal-to-background ratio (SBR) compared with RLI, which utilizes a flat scintillator. The purpose of this paper is to characterize flex-RLI with respect to alternative modalities including RLI, beta-RLI (RLI with gamma rejection), and Cerenkov luminescence imaging (CLI).

View Article and Find Full Text PDF

Unlabelled: Cerenkov luminescence imaging (CLI) can provide high-resolution images of (18)F-FDG-avid tumors but requires prolonged acquisition times because of low photon sensitivity. In this study, we proposed a new modality, termed β-radioluminescence imaging (β-RLI), which incorporates a scintillator with a γ-rejection strategy for imaging β particles. We performed a comparative evaluation of β-RLI with CLI in both in vitro and in vivo systems.

View Article and Find Full Text PDF

Unlabelled: Atherosclerosis underlies coronary artery disease, the leading cause of death in the United States and worldwide. Detection of coronary plaque inflammation remains challenging. In this study, we developed a scintillating balloon-enabled fiber-optic radionuclide imaging (SBRI) system to improve the sensitivity and resolution of plaque imaging using (18)F-FDG, a marker of vascular inflammation, and tested it in a murine model.

View Article and Find Full Text PDF

Unlabelled: Cerenkov luminescence endoscopy (CLE) is an optical technique that captures the Cerenkov photons emitted from highly energetic moving charged particles (β(+) or β(-)) and can be used to monitor the distribution of many clinically available radioactive probes. A main limitation of CLE is its limited sensitivity to small concentrations of radiotracer, especially when used with a light guide. We investigated the improvement in the sensitivity of CLE brought about by using a β(-) radiotracer that improved Cerenkov signal due to both higher β-particle energy and lower γ noise in the imaging optics because of the lack of positron annihilation.

View Article and Find Full Text PDF

Background: Atherosclerosis is a progressive inflammatory condition that underlies coronary artery disease (CAD)-the leading cause of death in the United States. Thus, the ultimate goal of this research is to advance our understanding of human CAD by improving the characterization of metabolically active vulnerable plaques within the coronary arteries using a novel catheter-based imaging system. The aims of this study include (1) developing a novel fiber-optic imaging system with a scintillator to detect both 18F and fluorescent glucose probes, and (2) validating the system on ex vivo murine plaques.

View Article and Find Full Text PDF

Unlabelled: Radioluminescence microscopy is a new method for imaging radionuclide uptake by single live cells with a fluorescence microscope. Here, we report a particle-counting scheme that improves spatial resolution by overcoming the β-range limit.

Methods: Short frames (10 μs-1 s) were acquired using a high-gain camera coupled to a microscope to capture individual ionization tracks.

View Article and Find Full Text PDF

Purpose: The feasibility of medical imaging using a medical linear accelerator to generate acoustic waves is investigated. This modality, x-ray acoustic computed tomography (XACT), has the potential to enable deeper tissue penetration in tissue than photoacoustic tomography via laser excitation.

Methods: Short pulsed (μs-range) 10 MV x-ray beams with dose-rate of approximately 30 Gy∕min were generated from a medical linear accelerator.

View Article and Find Full Text PDF

Radiotracers play an important role in interrogating molecular processes both in vitro and in vivo. However, current methods are limited to measuring average radiotracer uptake in large cell populations and, as a result, lack the ability to quantify cell-to-cell variations. Here we apply a new technique, termed radioluminescence microscopy, to visualize radiotracer uptake in single living cells, in a standard fluorescence microscopy environment.

View Article and Find Full Text PDF

Unlabelled: Cerenkov luminescence imaging (CLI) is an emerging new molecular imaging modality that is relatively inexpensive, easy to use, and has high throughput. CLI can image clinically available PET and SPECT probes using optical instrumentation. Cerenkov luminescence endoscopy (CLE) is one of the most intriguing applications that promise potential clinical translation.

View Article and Find Full Text PDF

We demonstrate the ability to image multiple nanoparticle-based contrast agents simultaneously using a nanophosphor platform excited by either radiopharmaceutical or X-ray irradiation. These radioluminescent nanoparticles emit optical light at unique wavelengths depending on their lanthanide dopant, enabling multiplexed imaging. This study demonstrates the separation of two distinct nanophosphor contrast agents in gelatin phantoms with a recovered phosphor separation correlation of -0.

View Article and Find Full Text PDF

Here, we report a straightforward synthesis process to produce colloidal Eu(3+)-activated nanophosphors (NPs) for use as bioimaging probes. In this procedure, poly(ethylene glycol) serves as a high-boiling point solvent allowing for nanoscale particle formation as well as a convenient medium for solvent exchange and subsequent surface modification. The La(OH)3:Eu(3+) NPs produced by this process were ~3.

View Article and Find Full Text PDF

We demonstrate quantitative functional imaging using image-guided near-infrared spectroscopy (IG-NIRS) implemented with the boundary element method (BEM) for reconstructing 3-D optical property estimates in breast tissue in vivo. A multimodality MRI-NIR system was used to collect measurements of light reflectance from breast tissue. The BEM was used to model light propagation in 3-D based only on surface discretization in order to reconstruct quantitative values of total hemoglobin (HbT), oxygen saturation, water, and scatter.

View Article and Find Full Text PDF

X-ray luminescence computed tomography (XLCT) is proposed as a new dual molecular/anatomical imaging modality. XLCT is based on the selective excitation and optical detection of x-ray-excitable nanoparticles. As a proof of concept, we built a prototype XLCT system and imaged near-IR-emitting Gd(2)O(2)S:Eu phosphors in various phantoms.

View Article and Find Full Text PDF

Magnetic resonance (MR) guided optical breast imaging is a promising modality to improve the specificity of breast imaging, because it provides high-resolution quantitative maps of total hemoglobin, oxygen saturation, water content, and optical scattering. These properties have been shown to distinguish malignant from benign lesions. However, the optical detection hardware required for deep tissue imaging has poor spectral sensitivity which limits accurate water quantification; this reduces the accuracy of hemoglobin quantification.

View Article and Find Full Text PDF