Publications by authors named "Colin A Sieff"

Background: Diamond-Blackfan anemia (DBA) is an inherited bone marrow failure syndrome characterized by anemia, short stature, congenital anomalies, and cancer predisposition. Most cases are due to mutations in genes encoding ribosomal proteins (RP) leading to RP haploinsufficiency. Effective treatments for the anemia of DBA include chronic red cell transfusions, long-term corticosteroid therapy, or hematopoietic stem cell transplantation.

View Article and Find Full Text PDF

Shwachman-Diamond Syndrome (SDS) is a rare and clinically-heterogeneous bone marrow (BM) failure syndrome caused by mutations in the Shwachman-Bodian-Diamond Syndrome (SBDS) gene. Although SDS was described over 50 years ago, the molecular pathogenesis is poorly understood due, in part, to the rarity and heterogeneity of the affected hematopoietic progenitors. To address this, we used single cell RNA sequencing to profile scant hematopoietic stem and progenitor cells from SDS patients.

View Article and Find Full Text PDF

Case: We report on a patient with heterozygous prothrombin G20210A mutation (PTM) and a history of venous thromboembolism (VTE) after knee arthroscopy, who was undergoing hip arthroscopy. This common mutation has an overall prevalence of 2.0% and results in a 280% to 420% likelihood of thrombosis compared to patients without the mutation.

View Article and Find Full Text PDF

Diamond-Blackfan anemia (DBA) is a rare bone marrow failure disorder that affects 7 out of 1,000,000 live births and has been associated with mutations in components of the ribosome. In order to characterize the genetic landscape of this heterogeneous disorder, we recruited a cohort of 472 individuals with a clinical diagnosis of DBA and performed whole-exome sequencing (WES). We identified relevant rare and predicted damaging mutations for 78% of individuals.

View Article and Find Full Text PDF

Diamond-Blackfan anemia (DBA) is a severe congenital hypoplastic anemia caused by mutation in a ribosomal protein gene. Major clinical issues concern the optimal management of patients resistant to steroids, the first-line therapy. Hematopoietic stem cell transplantation is indicated in young patients with an HLA-matched unaffected sibling donor, and recent results with matched unrelated donor transplants indicate that these patients also do well.

View Article and Find Full Text PDF

Acquired aplastic anemia and inherited bone marrow failure syndromes both present with pancytopenia and must be distinguished because they have differences in treatment decisions and continued monitoring requirements. Advances in the genetic interrogation of patient samples have led to identification of inherited germline diseases and appreciation that patients with inherited bone marrow failure disorders may be normal in appearance with few expected clinical clues. Somatic mutations in aplastic anemia may have prognostic value.

View Article and Find Full Text PDF

variants have previously been described in patients with myopathy, lactic acidosis and sideroblastic anemia 2 (MLASA2). encodes the mitochondrial tyrosyl-tRNA synthetase, which is responsible for conjugating tyrosine to its cognate mt-tRNA for mitochondrial protein synthesis. Here we describe 14 individuals from 11 families presenting with sideroblastic anemia and variants that we identified using a sideroblastic anemia gene panel or exome sequencing.

View Article and Find Full Text PDF
Article Synopsis
  • - Diamond-Blackfan anemia (DBA) is a genetic disorder that leads to inadequate red blood cell production due to issues with erythroid progenitor differentiation, creating a need for new treatments as many patients do not respond to corticosteroids.
  • - Researchers generated expandable hematopoietic progenitor cells from induced pluripotent stem cells (iPSCs) of DBA patients to study the disorder and found that these cells mirrored the erythroid differentiation defects seen in DBA, which were corrected through gene complementation.
  • - A small molecule called SMER28 was identified through chemical screening; it promotes autophagy and enhances red blood cell production by activating autophagy factor ATG5, offering a new therapeutic approach for DBA.
View Article and Find Full Text PDF

Ribosomal protein haploinsufficiency occurs in diverse human diseases including Diamond-Blackfan anemia (DBA), congenital asplenia and T cell leukemia. Yet, how mutations in genes encoding ubiquitously expressed proteins such as these result in cell-type- and tissue-specific defects remains unknown. Here, we identify mutations in GATA1, encoding the critical hematopoietic transcription factor GATA-binding protein-1, that reduce levels of full-length GATA1 protein and cause DBA in rare instances.

View Article and Find Full Text PDF

Diamond-Blackfan anemia (DBA) is an inherited red blood cell aplasia that usually presents during the first year of life. The main features of the disease are normochromic and macrocytic anemia, reticulocytopenia, and nearly absent erythroid progenitors in the bone marrow. The patients also present with growth retardation and craniofacial, upper limb, heart and urinary system congenital malformations in ~30-50 % of cases.

View Article and Find Full Text PDF

Diamond-Blackfan anemia (DBA) is a hypoplastic anemia characterized by impaired production of red blood cells, with approximately half of all cases attributed to ribosomal protein gene mutations. We performed exome sequencing on two siblings who had no known pathogenic mutations for DBA and identified a mutation in the gene encoding the hematopoietic transcription factor GATA1. This mutation, which occurred at a splice site of the GATA1 gene, impaired production of the full-length form of the protein.

View Article and Find Full Text PDF

Diamond-Blackfan anemia (DBA) is an inherited form of pure red cell aplasia that usually presents in infancy or early childhood and is associated with congenital malformations in ∼30-50% of patients. DBA has been associated with mutations in nine ribosomal protein (RP) genes in about 53% of patients. We completed a large-scale screen of 79 RP genes by sequencing 16 RP genes (RPL3, RPL7, RPL8, RPL10, RPL14, RPL17, RPL19, RPL23A, RPL26, RPL27, RPL35, RPL36A, RPL39, RPS4X, RPS4Y1, and RPS21) in 96 DBA probands.

View Article and Find Full Text PDF

Diamond-Blackfan anemia (DBA), an inherited bone marrow failure syndrome characterized by anemia that usually presents before the first birthday or in early childhood, is associated with birth defects and an increased risk of cancer. Although anemia is the most prominent feature of DBA, the disease is also characterized by growth retardation and congenital malformations, in particular craniofacial, upper limb, heart, and urinary system defects that are present in approximately 30%-50% of patients. DBA has been associated with mutations in seven ribosomal protein (RP) genes, RPS19, RPS24, RPS17, RPL35A, RPL5, RPL11, and RPS7, in about 43% of patients.

View Article and Find Full Text PDF

Diamond Blackfan anaemia (DBA) is a severe congenital failure of erythropoiesis. Despite mutations in one of several ribosome protein genes, including RPS19, the cause of the erythroid specificity is still a mystery. We hypothesized that, because the chromatin of late erythroid cells becomes condensed and transcriptionally inactive prior to enucleation, the rapidly proliferating immature cells require very high ribosome synthetic rates.

View Article and Find Full Text PDF

Diamond-Blackfan anemia (DBA), a congenital bone-marrow-failure syndrome, is characterized by red blood cell aplasia, macrocytic anemia, clinical heterogeneity, and increased risk of malignancy. Although anemia is the most prominent feature of DBA, the disease is also characterized by growth retardation and congenital anomalies that are present in approximately 30%-50% of patients. The disease has been associated with mutations in four ribosomal protein (RP) genes, RPS19, RPS24, RPS17, and RPL35A, in about 30% of patients.

View Article and Find Full Text PDF

Diamond-Blackfan anemia (DBA) is an inherited bone marrow failure syndrome characterized by anemia, congenital abnormalities, and cancer predisposition. Small ribosomal subunit genes RPS19, RPS24, and RPS17 are mutated in approximately one-third of patients. We used a candidate gene strategy combining high-resolution genomic mapping and gene expression microarray in the analysis of 2 DBA patients with chromosome 3q deletions to identify RPL35A as a potential DBA gene.

View Article and Find Full Text PDF

Diamond-Blackfan anemia (DBA) is a rare congenital red-cell aplasia characterized by anemia, bone-marrow erythroblastopenia, and congenital anomalies and is associated with heterozygous mutations in the ribosomal protein (RP) S19 gene (RPS19) in approximately 25% of probands. We report identification of de novo nonsense and splice-site mutations in another RP, RPS24 (encoded by RPS24 [10q22-q23]) in approximately 2% of RPS19 mutation-negative probands. This finding strongly suggests that DBA is a disorder of ribosome synthesis and that mutations in other RP or associated genes that lead to disrupted ribosomal biogenesis and/or function may also cause DBA.

View Article and Find Full Text PDF

Diamond-Blackfan anaemia (DBA) is a congenital anaemia and broad developmental disease that develops soon after birth. The anaemia is due to failure of erythropoiesis, with normal platelet and myeloid lineages, and it can be managed with steroids, blood transfusions, or stem cell transplantation. Normal erythropoiesis after transplantation shows that the defect is intrinsic to an erythroid precursor.

View Article and Find Full Text PDF

Diamond-Blackfan anemia (DBA) is a broad developmental disease characterized by anemia, bone marrow (BM) erythroblastopenia, and an increased incidence of malignancy. Mutations in ribosomal protein gene S19 (RPS19) are found in approximately 25% of DBA patients; however, the role of RPS19 in the pathogenesis of DBA remains unknown. Using global gene expression analysis, we compared highly purified multipotential, erythroid, and myeloid BM progenitors from RPS19 mutated and control individuals.

View Article and Find Full Text PDF

Diamond-Blackfan anemia (DBA) is a rare congenital pure red cell aplasia. Previous studies indicate that mutations of a gene on chromosome 19q13.2, which encodes a ribosomal protein, are responsible for 25% of cases.

View Article and Find Full Text PDF

Diamond-Blackfan anemia (DBA), a congenital erythroblastopenia, is a model disease for the study of erythroid differentiation but is poorly understood. RPS19 is the only gene yet to have been associated with DBA, but its relevance to erythroid differentiation is unclear. The molecular basis for the stimulation of erythropoiesis by glucocorticoids in patients with DBA has not been identified.

View Article and Find Full Text PDF

We recently identified a reduction in the neutrophil surface expression of common beta chain (beta c) of the receptor for granulocyte macrophage-colony stimulating factor (GM-CSF) in the patients with myelodysplastic syndromes (MDS). To determine the etiology of the impaired beta c expression, beta c mRNA from neutrophilic granulocytes of MDS patients and healthy controls was analyzed by a combination of direct reverse transcriptase-polymerase chain reaction-based single-strand conformational polymorphism and sequencing. Nine different beta c transcripts were detected, but none was specific for MDS.

View Article and Find Full Text PDF

The genetic basis of Diamond-Blackfan anaemia (DBA), a congenital erythroid hypoplasia that shows marked clinical heterogeneity, remains obscure. However, the fact that nearly one-quarter of patients harbour a variety of mutations in RPS19, a ribosomal protein gene, provides an opportunity to examine whether haplo-insufficiency of RPS19 protein can be demonstrated in certain cases. To that end, we identified 19 of 81 DBA index cases, both familial and sporadic, with RPS19 mutations.

View Article and Find Full Text PDF