Publications by authors named "Colin A Grambow"

Computational and machine learning approaches to model the conformational landscape of macrocyclic peptides have the potential to enable rational design and optimization. However, accurate, fast, and scalable methods for modeling macrocycle geometries remain elusive. Recent deep learning approaches have significantly accelerated protein structure prediction and the generation of small-molecule conformational ensembles, yet similar progress has not been made for macrocyclic peptides due to their unique properties.

View Article and Find Full Text PDF

Obtaining accurate enthalpies of formation of chemical species, Δ, often requires empirical corrections that connect the results of quantum mechanical (QM) calculations with the experimental enthalpies of elements in their standard state. One approach is to use atomization energy corrections followed by bond additivity corrections (BACs), such as those defined by Petersson et al. or Anantharaman and Melius.

View Article and Find Full Text PDF

The Reaction Mechanism Generator (RMG) database for chemical property prediction is presented. The RMG database consists of curated datasets and estimators for accurately predicting the parameters necessary for constructing a wide variety of chemical kinetic mechanisms. These datasets and estimators are mostly published and enable prediction of thermodynamics, kinetics, solvation effects, and transport properties.

View Article and Find Full Text PDF

In chemical kinetics research, kinetic models containing hundreds of species and tens of thousands of elementary reactions are commonly used to understand and predict the behavior of reactive chemical systems. Reaction Mechanism Generator (RMG) is a software suite developed to automatically generate such models by incorporating and extrapolating from a database of known thermochemical and kinetic parameters. Here, we present the recent version 3 release of RMG and highlight improvements since the previously published description of RMG v1.

View Article and Find Full Text PDF

Lack of quality data and difficulty generating these data hinder quantitative understanding of reaction kinetics. Specifically, conventional methods to generate transition state structures are deficient in speed, accuracy, or scope. We describe a novel method to generate three-dimensional transition state structures for isomerization reactions using reactant and product geometries.

View Article and Find Full Text PDF

Reaction times, activation energies, branching ratios, yields, and many other quantitative attributes are important for precise organic syntheses and generating detailed reaction mechanisms. Often, it would be useful to be able to classify proposed reactions as fast or slow. However, quantitative chemical reaction data, especially for atom-mapped reactions, are difficult to find in existing databases.

View Article and Find Full Text PDF

Advances in deep neural network (DNN)-based molecular property prediction have recently led to the development of models of remarkable accuracy and generalization ability, with graph convolutional neural networks (GCNNs) reporting state-of-the-art performance for this task. However, some challenges remain, and one of the most important that needs to be fully addressed concerns uncertainty quantification. DNN performance is affected by the volume and the quality of the training samples.

View Article and Find Full Text PDF

Quantitative predictions of reaction properties, such as activation energy, have been limited due to a lack of available training data. Such predictions would be useful for computer-assisted reaction mechanism generation and organic synthesis planning. We develop a template-free deep learning model to predict the activation energy given reactant and product graphs and train the model on a new, diverse data set of gas-phase quantum chemistry reactions.

View Article and Find Full Text PDF

Machine learning provides promising new methods for accurate yet rapid prediction of molecular properties, including thermochemistry, which is an integral component of many computer simulations, particularly automated reaction mechanism generation. Often, very large data sets with tens of thousands of molecules are required for training the models, but most data sets of experimental or high-accuracy quantum mechanical quality are much smaller. To overcome these limitations, we calculate new high-level data sets and derive bond additivity corrections to significantly improve enthalpies of formation.

View Article and Find Full Text PDF

Because collecting precise and accurate chemistry data is often challenging, chemistry data sets usually only span a small region of chemical space, which limits the performance and the scope of applicability of data-driven models. To address this issue, we integrated an active learning machine with automatic ab initio calculations to form a self-evolving model that can continuously adapt to new species appointed by the users. In the present work, we demonstrate the self-evolving concept by modeling the formation enthalpies of stable closed-shell polycyclic species calculated at the B3LYP/6-31G(2df,p) level of theory.

View Article and Find Full Text PDF

Ketohydroperoxides are important in liquid-phase autoxidation and in gas-phase partial oxidation and pre-ignition chemistry, but because of their low concentration, instability, and various analytical chemistry limitations, it has been challenging to experimentally determine their reactivity, and only a few pathways are known. In the present work, 75 elementary-step unimolecular reactions of the simplest γ-ketohydroperoxide, 3-hydroperoxypropanal, were discovered by a combination of density functional theory with several automated transition-state search algorithms: the Berny algorithm coupled with the freezing string method, single- and double-ended growing string methods, the heuristic KinBot algorithm, and the single-component artificial force induced reaction method (SC-AFIR). The present joint approach significantly outperforms previous manual and automated transition-state searches - 68 of the reactions of γ-ketohydroperoxide discovered here were previously unknown and completely unexpected.

View Article and Find Full Text PDF