Publications by authors named "Colette M Knight"

Type 1 diabetes (T1D) is an autoimmune disease that causes a deficit of pancreatic islet β cells. Millions of individuals worldwide have T1D, and its incidence increases annually. Recent clinical trials have highlighted the limits of conventional immunotherapy in T1D and underscore the need for novel treatments that not only overcome multiple immune dysfunctions, but also help restore islet β-cell function.

View Article and Find Full Text PDF

Obesity is associated with higher incidence of cancer, but the predisposing mechanisms remain poorly understood. The NAD(+)-dependent deacetylase SirT1 orchestrates metabolism, cellular survival, and growth. However, there is no unifying mechanism to explain the metabolic and tumor-related effects of SirT1.

View Article and Find Full Text PDF

Patients with Alzheimer's disease (AD) have a higher risk for developing insulin resistance and diabetes. Amyloid plaques, a hallmark of AD, are composed of amyloid-β (Aβ). Because the mediobasal hypothalamus controls hepatic glucose production, we examined the hypothesis that its exposure to Aβ perturbs the regulation of glucose metabolism.

View Article and Find Full Text PDF

Insulin integrates hepatic glucose and lipid metabolism, directing nutrients to storage as glycogen and triglyceride. In type 2 diabetes, levels of the former are low and the latter are exaggerated, posing a pathophysiologic and therapeutic conundrum. A branching model of insulin signalling, with FoxO1 presiding over glucose production and Srebp-1c regulating lipogenesis, provides a potential explanation.

View Article and Find Full Text PDF

The metabolism of lactate to pyruvate in the mediobasal hypothalamus (MBH) regulates hepatic glucose production. Because astrocytes and neurons are functionally linked by metabolic coupling through lactate transfer via the astrocyte-neuron lactate shuttle (ANLS), we reasoned that astrocytes might be involved in the hypothalamic regulation of glucose metabolism. To examine this possibility, we used the gluconeogenic amino acid proline, which is metabolized to pyruvate in astrocytes.

View Article and Find Full Text PDF

Objective: Sirtuin 1 (SIRT1) and its activator resveratrol are emerging as major regulators of metabolic processes. We investigate the site of resveratrol action on glucose metabolism and the contribution of SIRT1 to these effects. Because the arcuate nucleus in the mediobasal hypothalamus (MBH) plays a pivotal role in integrating peripheral metabolic responses to nutrients and hormones, we examined whether the actions of resveratrol are mediated at the MBH.

View Article and Find Full Text PDF