Cupriachelin is a photoreactive lipopeptide siderophore produced by the freshwater bacterium Cupriavidus necator H16. In the presence of sunlight, the iron-loaded siderophore undergoes photolytic cleavage, thereby releasing solubilized iron into the environment. This iron is not only available to the siderophore producer, but also to the surrounding microbial community.
View Article and Find Full Text PDFOrg Biomol Chem
September 2016
Almost all life forms depend on iron as an essential micronutrient that is needed for electron transport and metabolic processes. Siderophores are low-molecular-weight iron chelators that safeguard the supply of this important metal to bacteria, fungi and graminaceous plants. Although animals and the majority of plants do not utilise siderophores and have alternative means of iron acquisition, siderophores have found important clinical and agricultural applications.
View Article and Find Full Text PDFPhotoreactive siderophores have a major impact on the growth of planktonic organisms. To date, these molecules have mainly been reported from marine bacteria, although evidence is now accumulating that some terrestrial bacteria also harbor the biosynthetic potential for their production. In this paper, we describe the genomics-driven discovery and characterization of variochelins, lipopeptide siderophores from the bacterium Variovorax boronicumulans, which thrives in soil and freshwater habitats.
View Article and Find Full Text PDF