Publications by authors named "Colette Gaba"

Background: Clinical, molecular, and genetic epidemiology studies displayed remarkable differences between ever- and never-smoking lung cancer.

Methods: We conducted a stratified multi-population (European, East Asian, and African descent) association study on 44,823 ever-smokers and 20,074 never-smokers to identify novel variants that were missed in the non-stratified analysis. Functional analysis including expression quantitative trait loci (eQTL) colocalization and DNA damage assays, and annotation studies were conducted to evaluate the functional roles of the variants.

View Article and Find Full Text PDF

To identify new susceptibility loci to lung cancer among diverse populations, we performed cross-ancestry genome-wide association studies in European, East Asian and African populations and discovered five loci that have not been previously reported. We replicated 26 signals and identified 10 new lead associations from previously reported loci. Rare-variant associations tended to be specific to populations, but even common-variant associations influencing smoking behavior, such as those with CHRNA5 and CYP2A6, showed population specificity.

View Article and Find Full Text PDF

Differences by sex in lung cancer incidence and mortality have been reported which cannot be fully explained by sex differences in smoking behavior, implying existence of genetic and molecular basis for sex disparity in lung cancer development. However, the information about sex dimorphism in lung cancer risk is quite limited despite the great success in lung cancer association studies. By adopting a stringent two-stage analysis strategy, we performed a genome-wide gene-sex interaction analysis using genotypes from a lung cancer cohort including ~ 47 000 individuals with European ancestry.

View Article and Find Full Text PDF

The solute carrier (SLC) superfamily encompasses >400 transmembrane transporters involved in the exchange of amino acids, nutrients, ions, metals, neurotransmitters and metabolites across biological membranes. SLCs are highly expressed in the mammalian brain; defects in nearly 100 unique SLC-encoding genes (OMIM: https://www.omim.

View Article and Find Full Text PDF

Although lung cancer is known to be caused by environmental factors, it has also been shown to have genetic components, and the genetic etiology of lung cancer remains understudied. We previously identified a lung cancer risk locus on 6q23-25 using microsatellite data in families with a history of lung cancer. To further elucidate that signal, we performed targeted sequencing on nine of our most strongly linked families.

View Article and Find Full Text PDF

Recent studies suggest that rare variants exhibit stronger effect sizes and might play a crucial role in the etiology of lung cancers (LC). Whole exome plus targeted sequencing of germline DNA was performed on 1045 LC cases and 885 controls in the discovery set. To unveil the inherited causal variants, we focused on rare and predicted deleterious variants and small indels enriched in cases or controls.

View Article and Find Full Text PDF

Background: Lung cancer kills more people than any other cancer in the United States. In addition to environmental factors, lung cancer has genetic risk factors as well, though the genetic etiology is still not well understood. We have performed whole exome sequencing on 262 individuals from 28 extended families with a family history of lung cancer.

View Article and Find Full Text PDF

Background: Genome-wide association studies are widely used to map genomic regions contributing to lung cancer (LC) susceptibility, but they typically do not identify the precise disease-causing genes/variants. To unveil the inherited genetic variants that cause LC, we performed focused exome-sequencing analyses on genes located in 121 genome-wide association study-identified loci previously implicated in the risk of LC, chronic obstructive pulmonary disease, pulmonary function level, and smoking behavior.

Methods: Germline DNA from 260 case patients with LC and 318 controls were sequenced by utilizing VCRome 2.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigated genetic variations linked to lung cancer risk by comparing 685 familial lung cancer cases with 744 controls without the disease, using a genome-wide association analysis.
  • Findings were validated through additional data from six studies within the Transdisciplinary Research on Cancer of the Lung Consortium, which included nearly 2000 familial cases and over 33,000 controls.
  • Significant associations were discovered, including a novel variant near the LCORL gene and confirmations of known variants related to different lung cancer types, emphasizing shared genetic risks in familial and sporadic cases.
View Article and Find Full Text PDF

Objective: One of four American cancer patients dies of lung cancer. Environmental factors such as tobacco smoking are known to affect lung cancer risk. However, there is a genetic factor to lung cancer risk as well.

View Article and Find Full Text PDF

Lung cancer is the deadliest cancer in the United States, killing roughly one of four cancer patients in 2016. While it is well-established that lung cancer is caused primarily by environmental effects (particularly tobacco smoking), there is evidence for genetic susceptibility. Lung cancer has been shown to aggregate in families, and segregation analyses have hypothesized a major susceptibility locus for the disease.

View Article and Find Full Text PDF

Introduction: The association between smoking-induced chronic obstructive pulmonary disease (COPD) and lung cancer (LC) is well documented. Recent genome-wide association studies (GWAS) have identified 28 susceptibility loci for LC, 10 for COPD, 32 for smoking behavior, and 63 for pulmonary function, totaling 107 nonoverlapping loci. Given that common variants have been found to be associated with LC in genome-wide association studies, exome sequencing of these high-priority regions has great potential to identify novel rare causal variants.

View Article and Find Full Text PDF

PARK2, a gene associated with Parkinson disease, is a tumor suppressor in human malignancies. Here, we show that c.823C>T (p.

View Article and Find Full Text PDF

A common variant on chromosomal region 15q24-25.1, marked by rs1051730, was found to be associated with lung cancer risk. Here, we attempted to confirm the second variant on 15q24-25.

View Article and Find Full Text PDF

Cigarette smoking is the major cause for lung cancer, but genetic factors also affect susceptibility. We studied families that included multiple relatives affected by lung cancer. Results from linkage analysis showed strong evidence that a region of chromosome 6q affects lung cancer risk.

View Article and Find Full Text PDF

Background: Genetic factors play important roles in lung cancer susceptibility. In this study, we replicated the association of 5p15.33 and 6p21.

View Article and Find Full Text PDF

Recent genome-wide association studies have linked the chromosome 15q24-25.1 locus to nicotine addiction and lung cancer susceptibility. To refine the 15q24-25.

View Article and Find Full Text PDF

Purpose: We have previously mapped a major susceptibility locus influencing familial lung cancer risk to chromosome 6q23-25. However, the causal gene at this locus remains undetermined. In this study, we further refined this locus to identify a single candidate gene, by fine mapping using microsatellite markers and association studies using high-density single nucleotide polymorphisms (SNP).

View Article and Find Full Text PDF

Three recent genome-wide association studies identified associations between markers in the chromosomal region 15q24-25.1 and the risk of lung cancer. We conducted a genome-wide association analysis to investigate associations between single-nucleotide polymorphisms (SNPs) and the risk of lung cancer, in which we used blood DNA from 194 case patients with familial lung cancer and 219 cancer-free control subjects.

View Article and Find Full Text PDF

The use of tyrosine kinase inhibitors (TKI) has yielded great success in treatment of lung adenocarcinomas. However, patients who develop resistance to TKI treatment often acquire a somatic resistance mutation (T790M) located in the catalytic cleft of the epidermal growth factor receptor (EGFR) enzyme. Recently, a report describing EGFR-T790M as a germ-line mutation suggested that this mutation may be associated with inherited susceptibility to lung cancer.

View Article and Find Full Text PDF

In this study, we observed loss of heterozygosity (LOH) in human chromosomal fragment 6q25.1 in sporadic lung cancer patients. LOH was observed in 65% of the 26 lung tumors examined and was narrowed down to a 2.

View Article and Find Full Text PDF