Publications by authors named "Colegrave N"

The continued existence of sex, despite many the costs it entails, still lacks an adequate explanation, as previous studies demonstrated that the effects of sex are environment-dependent: sex enhances the rate of adaptation in changing environments, but the benefits level off in benign conditions. To the best of our knowledge, the potential impact of different patterns of environmental change on the magnitude of these benefits received less attention in theoretical studies. In this paper, we begin to explore this issue by examining the effect of the rate of environmental deterioration (negatively correlated with population survival rate), on the benefits of sex.

View Article and Find Full Text PDF

Repeated social interactions with conspecifics and/or heterospecifics during early development may drive the differentiation of behavior among individuals. Competition is a major form of social interaction and its impacts can depend on whether interactions occur between conspecifics or heterospecifics and the directionality of a response could be specific to the ecological context that they are measured in. To test this, we reared tungara frog tadpoles () either in isolation, with a conspecific tadpole or with an aggressive heterospecific tadpole, the whistling frog tadpole ().

View Article and Find Full Text PDF

The distribution of fitness effects (DFE) for new mutations is fundamental for many aspects of population and quantitative genetics. In this study, we have inferred the DFE in the single-celled alga Chlamydomonas reinhardtii by estimating changes in the frequencies of 254 spontaneous mutations under experimental evolution and equating the frequency changes of linked mutations with their selection coefficients. We generated seven populations of recombinant haplotypes by crossing seven independently derived mutation accumulation lines carrying an average of 36 mutations in the haploid state to a mutation-free strain of the same genotype.

View Article and Find Full Text PDF

De novo mutations are central for evolution, since they provide the raw material for natural selection by regenerating genetic variation. However, studying de novo mutations is challenging and is generally restricted to model species, so we have a limited understanding of the evolution of the mutation rate and spectrum between closely related species. Here, we present a mutation accumulation (MA) experiment to study de novo mutation in the unicellular green alga Chlamydomonas incerta and perform comparative analyses with its closest known relative, Chlamydomonas reinhardtii.

View Article and Find Full Text PDF

Objective: To report the authors' initial experience of transcarotid transcatheter aortic valve replacement (TAVR) managed with ultrasound-guided intermediate cervical plexus block.

Design: A single-center prospective study.

Setting: A teaching hospital in Paris, France.

View Article and Find Full Text PDF

Demographic theory and data have emphasized that nonheritable variation in individual frailty enables selection within cohorts, affecting the dynamics of a population while being invisible to its evolution. Here, we include the component of individual variation in longevity or viability which is nonheritable in simple bacterial growth models and explore its ecological and evolutionary impacts. First, we find that this variation produces consistent trends in longevity differences between bacterial genotypes when measured across stress gradients.

View Article and Find Full Text PDF

The explanation for the continued existence of sex, despite its many costs, remains one of the major challenges of evolutionary biology. Previous experimental studies have demonstrated that sex increases the rate of adaptation in novel environments relative to asexual reproduction. Whereas these studies have investigated the impact of sex on adaptation to stressful abiotic environments, the potential for biotic interactions to influence this advantage of sex has been largely ignored.

View Article and Find Full Text PDF

The nature of population structure in microbial eukaryotes has long been debated. Competing models have argued that microbial species are either ubiquitous, with high dispersal and low rates of speciation, or that for many species gene flow between populations is limited, resulting in evolutionary histories similar to those of macroorganisms. However, population genomic approaches have seldom been applied to this question.

View Article and Find Full Text PDF

Spontaneous mutations are the source of new genetic variation and are thus central to the evolutionary process. In molecular evolution and quantitative genetics, the nature of genetic variation depends critically on the distribution of effects of mutations on fitness and other quantitative traits. Spontaneous mutation accumulation (MA) experiments have been the principal approach for investigating the overall rate of occurrence and cumulative effect of mutations but have not allowed the phenotypic effects of individual mutations to be studied directly.

View Article and Find Full Text PDF

The New Caledonian crow is the only non-human animal known to craft hooked tools in the wild, but the ecological benefit of these relatively complex tools remains unknown. Here, we show that crows acquire food several times faster when using hooked rather than non-hooked tools, regardless of tool material, prey type and extraction context. This implies that small changes to tool shape can strongly affect energy-intake rates, highlighting a powerful driver for technological advancement.

View Article and Find Full Text PDF

Pseudoreplication is controversial across experimental biology. Researchers in the same field can disagree on whether a given study suffers from pseudoreplication and on to what extent any pseudoreplication undermines the value of a study. A recent survey indicated that concerns about pseudoreplication can strongly impact peer review of manuscripts submitted for publication.

View Article and Find Full Text PDF

Although all genetic variation ultimately stems from mutations, their properties are difficult to study directly. Here, we used multiple mutation accumulation (MA) lines derived from five genetic backgrounds of the green algae Chlamydomonas reinhardtii that have been previously subjected to whole genome sequencing to investigate the relationship between the number of spontaneous mutations and change in fitness from a nonevolved ancestor. MA lines were on average less fit than their ancestors and we detected a significantly negative correlation between the change in fitness and the total number of accumulated mutations in the genome.

View Article and Find Full Text PDF

Climate change is altering aquatic environments in a complex way, and simultaneous shifts in many properties will drive evolutionary responses in primary producers at the base of both freshwater and marine ecosystems. So far, evolutionary studies have shown how changes in environmental drivers, either alone or in pairs, affect the evolution of growth and other traits in primary producers. Here, we evolve a primary producer in 96 unique environments with different combinations of between one and eight environmental drivers to understand how evolutionary responses to environmental change depend on the identity and number of drivers.

View Article and Find Full Text PDF

Environments rarely remain the same over time, and populations are therefore frequently at risk of going extinct when changes are significant enough to reduce fitness. Although many studies have investigated what attributes of the new environments and of the populations experiencing these changes will affect their probability of going extinct, limited work has been directed towards determining the role of population history on the probability of going extinct during severe environmental change. Here, we compare the extinction risk of populations with a history of selection in a benign environment, to populations with a history of selection in one or two stressful environments.

View Article and Find Full Text PDF

A common approach to the analysis of experimental data across much of the biological sciences is test-qualified pooling. Here non-significant terms are dropped from a statistical model, effectively pooling the variation associated with each removed term with the error term used to test hypotheses (or estimate effect sizes). This pooling is only carried out if statistical testing on the basis of applying that data to a previous more complicated model provides motivation for this model simplification; hence the pooling is test-qualified.

View Article and Find Full Text PDF

The adaptive function of sex has been extensively studied, while less consideration has been given to the potential downstream consequences of sex on evolution. Here, we investigate one such potential consequence, the effect of sex on the repeatability of evolution. By affecting the repeatability of evolution, sex could have important implications for biodiversity, and for our ability to make predictions about the outcome of environmental change.

View Article and Find Full Text PDF

It is important for biology to understand if observations made in highly reductionist laboratory settings generalise to harsh and noisy natural environments in which genetic variation is sorted to produce adaptation. But what do we learn by studying, in the laboratory, a genetically diverse population that mirrors the wild? What is the best design for studying genetic variation? When should we consider it at all? The right experimental approach depends on what you want to know.

View Article and Find Full Text PDF

Introduction: Quantitative neuromuscular monitoring is now widely recommended during anesthesia using neuromuscular blocking agents to prevent postoperative residual paralysis and its related complications. We compared the TOF-Watch SX™ accelerometer requiring initial calibration to the TOF-Scan™, a new accelerometer with a preset stimulation intensity of 50mA not necessitating calibration.

Study Design: This pilot, prospective, observational study included adults undergoing general anesthesia with endotracheal intubation and muscle relaxation, having both arms free during surgery.

View Article and Find Full Text PDF

Respiratory syncytial virus (RSV) is a leading cause of respiratory tract infection in infants, causing significant morbidity and mortality. No vaccine or specific, effective treatment is currently available. A more complete understanding of the key components of effective host response to RSV and novel preventative and therapeutic interventions are urgently required.

View Article and Find Full Text PDF

Most spontaneous mutations affecting fitness are likely to be deleterious, but the strength of selection acting on them might be impacted by environmental stress. Such stress-dependent selection could expose hidden genetic variation, which in turn might increase the adaptive potential of stressed populations. On the other hand, this variation might represent a genetic load and thus lead to population extinction under stress.

View Article and Find Full Text PDF

Plastids perform crucial cellular functions, including photosynthesis, across a wide variety of eukaryotes. Since endosymbiosis, plastids have maintained independent genomes that now display a wide diversity of gene content, genome structure, gene regulation mechanisms, and transmission modes. The evolution of plastid genomes depends on an input of de novo mutation, but our knowledge of mutation in the plastid is limited to indirect inference from patterns of DNA divergence between species.

View Article and Find Full Text PDF

The marine-freshwater boundary has been suggested as one of the most difficult to cross for organisms. Salt is a major ecological factor and provides an unequalled range of ecological opportunity because marine habitats are much more extensive than freshwater habitats, and because salt strongly affects the structure of microbial communities. We exposed experimental populations of the freshwater alga Chlamydomonas reinhardtii to steadily increasing concentrations of salt.

View Article and Find Full Text PDF

Describing the process of spontaneous mutation is fundamental for understanding the genetic basis of disease, the threat posed by declining population size in conservation biology, and much of evolutionary biology. Directly studying spontaneous mutation has been difficult, however, because new mutations are rare. Mutation accumulation (MA) experiments overcome this by allowing mutations to build up over many generations in the near absence of natural selection.

View Article and Find Full Text PDF

Virulence traits are essential for pathogen fitness, but whether they affect microbial performance in the environment, where they are not needed, remains experimentally unconfirmed. We investigated this question with the facultative pathogen Listeria monocytogenes and its PrfA virulence regulon. PrfA-regulated genes are activated intracellularly (PrfA 'ON') but shut down outside the host (PrfA 'OFF').

View Article and Find Full Text PDF