Publications by authors named "Coleen Damcott"

Objective: To implement, disseminate, and evaluate a sustainable method for identifying, diagnosing, and promoting individualized therapy for monogenic diabetes.

Research Design And Methods: Patients were recruited into the implementation study through a screening questionnaire completed in the waiting room or through the patient portal, physician recognition, or self-referral. Patients suspected of having monogenic diabetes based on the processing of their questionnaire and other data through an algorithm underwent next-generation sequencing for 40 genes implicated in monogenic diabetes and related conditions.

View Article and Find Full Text PDF

Here we examine the association between DNA methylation in circulating leukocytes and blood lipids in a multi-ethnic sample of 16,265 subjects. We identify 148, 35, and 4 novel associations among Europeans, African Americans, and Hispanics, respectively, and an additional 186 novel associations through a trans-ethnic meta-analysis. We observe a high concordance in the direction of effects across racial/ethnic groups, a high correlation of effect sizes between high-density lipoprotein and triglycerides, a modest overlap of associations with epigenome-wide association studies of other cardio-metabolic traits, and a largely non-overlap with lipid loci identified to date through genome-wide association studies.

View Article and Find Full Text PDF
Article Synopsis
  • Genome-wide studies have found many genetic factors tied to blood pressure (BP), but most of the BP variation is not due to these genetic changes.
  • Researchers conducted a large-scale analysis of blood DNA methylation from over 17,000 people with diverse ancestry and identified 13 important methylation sites impacting BP.
  • These methylation sites are heritable and can explain a small portion of BP differences, suggesting that epigenetic changes (like DNA methylation) may play a significant role in BP regulation beyond just genetic factors.
View Article and Find Full Text PDF

Although there is compelling evidence for a genetic contribution to longevity, identification of specific genes that robustly associate with longevity has been a challenge. In order to identify longevity-enhancing genes, we measured differential gene expression between offspring of long-lived Amish (older than 90 years; cases, n = 128) and spouses of these offspring (controls, n = 121) and correlated differentially expressed transcripts with locations of longevity-associated variants detected in a prior genome-wide association study (GWAS) of survival to age 90. Expression of one of these transcripts, 3'-phosphoadenosine 5'-phosphosulfate synthase 2 (PAPSS2), was significantly higher in offspring versus controls (4×10(-4)) and this association was replicated using quantitative real-time polymerase chain reaction.

View Article and Find Full Text PDF

Background: Lipolysis regulates energy homeostasis through the hydrolysis of intracellular triglycerides and the release of fatty acids for use as energy substrates or lipid mediators in cellular processes. Genes encoding proteins that regulate energy homeostasis through lipolysis are thus likely to play an important role in determining susceptibility to metabolic disorders.

Methods: We sequenced 12 lipolytic-pathway genes in Old Order Amish participants whose fasting serum triglyceride levels were at the extremes of the distribution and identified a novel 19-bp frameshift deletion in exon 9 of LIPE, encoding hormone-sensitive lipase (HSL), a key enzyme for lipolysis.

View Article and Find Full Text PDF

BACKGROUND- Aspirin or dual antiplatelet therapy with aspirin and clopidogrel is a standard therapy for patients who are at increased risk for cardiovascular events. However, the genetic determinants of variable response to aspirin (alone and in combination with clopidogrel) are not known. METHODS AND RESULTS- We measured ex vivo platelet aggregation before and after dual antiplatelet therapy in individuals (n=565) from the Pharmacogenomics of Anti-Platelet Intervention (PAPI) Study and conducted a genome-wide association study of drug response.

View Article and Find Full Text PDF

We carried out a genome-wide association study of serum aspartate aminotransferase (AST) activity in 866 Amish participants of the Heredity and Phenotype Intervention Heart Study and identified significant association of AST activity with a cluster of single nucleotide polymorphisms located on chromosome 10q24.1 (peak association was rs17109512; P=2.80E-14), in the vicinity of GOT1, the gene encoding cytosolic AST (cAST).

View Article and Find Full Text PDF

Background: Elevated low-density lipoprotein cholesterol (LDL-C) levels are a major cardiovascular disease risk factor. Genetic factors are an important determinant of LDL-C levels.

Methods: To identify single nucleotide polymorphisms associated with LDL-C and subclinical coronary atherosclerosis, we performed a genome-wide association study of LDL-C in 841 asymptomatic Amish individuals aged 20 to 80 years, with replication in a second sample of 663 Amish individuals.

View Article and Find Full Text PDF

Background: Telomeres shorten as cells divide. This shortening is compensated by the enzyme telomerase. We evaluated the effect of common variants in the telomerase RNA component (TERC) gene on telomere length (TL) in the population-based Health Aging and Body Composition (Health ABC) Study and in two replication samples (the TwinsUK Study and the Amish Family Osteoporosis Study, AFOS).

View Article and Find Full Text PDF

Perilipins are lipid droplet-coating proteins that regulate intracellular lipolysis in adipocytes. A haplotype of two perilipin gene (PLIN) single nucleotide polymorphisms, 13041A>G and 14995A>T, has been previously associated with obesity risk. Furthermore, the available data indicate that this association may be modified by sex.

View Article and Find Full Text PDF

Context: Clopidogrel therapy improves cardiovascular outcomes in patients with acute coronary syndromes and following percutaneous coronary intervention by inhibiting adenosine diphosphate (ADP)-dependent platelet activation. However, nonresponsiveness is widely recognized and is related to recurrent ischemic events.

Objective: To identify gene variants that influence clopidogrel response.

View Article and Find Full Text PDF

Postprandial triglyceridemia is an emerging risk factor for cardiovascular disease. However, most of the genes that influence postprandial triglyceridemia are not known. We evaluated whether a common nonsynonymous SNP rs1260326/P446L in the glucokinase regulatory protein (GCKR) gene influenced variation in the postprandial lipid response after a high-fat challenge in seven hundred and seventy participants in the Amish HAPI Heart Study who underwent an oral high-fat challenge and had blood samples taken in the fasting state and during the postprandial phase at 1, 2, 3, 4, and 6 h.

View Article and Find Full Text PDF

Apolipoprotein C-III (apoC-III) inhibits triglyceride hydrolysis and has been implicated in coronary artery disease. Through a genome-wide association study, we have found that about 5% of the Lancaster Amish are heterozygous carriers of a null mutation (R19X) in the gene encoding apoC-III (APOC3) and, as a result, express half the amount of apoC-III present in noncarriers. Mutation carriers compared with noncarriers had lower fasting and postprandial serum triglycerides, higher levels of HDL-cholesterol and lower levels of LDL-cholesterol.

View Article and Find Full Text PDF

Background: Systemic blood pressure, influenced by both genetic and environmental factors, is regulated via sympathetic nerve activity. We assessed the role of genetic variation in three subunits of the neuromuscular nicotinic acetylcholine receptor positioned on chromosome 2q, a region showing replicated evidence of linkage to blood pressure.

Methods: We sequenced CHRNA1, CHRND and CHRNG in 24 Amish subjects from the Amish Family Diabetes Study (AFDS) and identified 20 variants.

View Article and Find Full Text PDF

Background: The etiology of cardiovascular disease (CVD) is multifactorial. Efforts to identify genes influencing CVD risk have met with limited success to date, likely because of the small effect sizes of common CVD risk alleles and the presence of gene by gene and gene by environment interactions.

Methods: The HAPI Heart Study was initiated in 2002 to measure the cardiovascular response to 4 short-term interventions affecting cardiovascular risk factors and to identify the genetic and environmental determinants of these responses.

View Article and Find Full Text PDF

Objective: We sought to identify type 2 diabetes susceptibility genes through a genome-wide association scan (GWAS) in the Amish.

Research Design And Methods: DNA from 124 type 2 diabetic case subjects and 295 control subjects with normal glucose tolerance were genotyped on the Affymetrix 100K single nucleotide polymorphism (SNP) array. A total of 82,485 SNPs were tested for association with type 2 diabetes.

View Article and Find Full Text PDF

Telomere length (TL) is emerging as a biomarker for aging and survival. To evaluate factors influencing this trait, we measured TL in a large homogeneous population, estimated the heritability (h(2)), and tested for parental effects on TL variation. Our sample included 356 men and 551 women, aged 18-92 years, from large Amish families.

View Article and Find Full Text PDF

Background: Through a genome-wide association study, we discovered an association of the electrocardiographic QT interval with polymorphisms in the NOS1AP (CAPON) gene. The purpose of the current study was to replicate this association in the Old Order Amish.

Methods: Four NOS1AP SNPs were selected that captured all major haplotypes in the region of interest ( approximately 120 kb segment).

View Article and Find Full Text PDF

Objective: Variants within the scavenger receptor class B type I (SCARB1) receptor gene have been previously associated with lipid levels, especially in women, with some studies reporting the association to be stronger in the presence of diabetes or post-menopausal estrogen use. Based on the reported gender-specific association and modification effect of estrogen on lipid levels according to SCARB1 variants, we explored the relationship between SCARBI single nucleotide polymorphisms (SNPs) and lipid levels in an Amish population to assess sex and age differences.

Methods: Eight SCARB1 SNPs, identified from public databases, were genotyped in 919 subjects.

View Article and Find Full Text PDF

Rho guanine nucleotide exchange factor 11 (ARHGEF11), located on chromosome 1q21, is involved in G protein signaling and is a pathway known to play a role in both insulin secretion and action. We genotyped 52 single nucleotide polymorphims (SNPs) in ARHGEF11 and compared the genotype frequencies of subjects with type 2 diabetes (n = 145) or type 2 diabetes/impaired glucose tolerance (IGT) (n = 293) with those of control subjects with normal glucose tolerance (NGT) (n = 358). Thirty SNPs, spanning the entire gene, were significantly associated with type 2 diabetes or type 2 diabetes/IGT.

View Article and Find Full Text PDF

Activating transcription factor 6 (ATF6) is located within the region of linkage to type 2 diabetes on chromosome 1q21-q23 and is a key activator of the endoplasmic reticulum stress response. We evaluated 78 single nucleotide polymorphisms (SNPs) spanning >213 kb in 95 people, from which we selected 64 SNPs for evaluation in 191 Caucasian case subjects from Utah and between 165 and 188 control subjects. Six SNPs showed nominal associations with type 2 diabetes (P = 0.

View Article and Find Full Text PDF

Transcription factor 7-like 2 (TCF7L2) regulates genes involved in cell proliferation and differentiation. The TCF7L2 gene is located on chromosome 10q25 in a region of replicated linkage to type 2 diabetes. Recently, a microsatellite marker in intron 3 (DG10S478) and five correlated single nucleotide polymorphisms (SNPs) were identified in Icelandic individuals that showed strong association with type 2 diabetes, which was replicated in Danish and European-American cohorts.

View Article and Find Full Text PDF

The gene encoding the transcription factor upstream stimulatory factor (USF)1 influences susceptibility to familial combined hyperlipidemia (FCHL) and triglyceride levels. Phenotypic overlap between FCHL and type 2 diabetes makes USF1 a compelling positional candidate for the widely replicated type 2 diabetes linkage signal on chromosome 1q. We typed 22 variants in the F11R/USF1 region (1 per 3 kb), including those previously implicated in FCHL-susceptibility (or proxies thereof) in 3,726 samples preferentially enriched for 1q linkage.

View Article and Find Full Text PDF