Publications by authors named "Cole McQueen"

The functionally differentiated mammary gland adapts to extreme levels of stress from increased demand for energy by activating specific protective mechanisms to support neonatal health. Here, we identify the breast tumor suppressor gene, single-minded 2 s (SIM2s) as a novel regulator of mitophagy, a key component of this stress response. Using tissue-specific mouse models, we found that loss of Sim2 reduced lactation performance, whereas gain (overexpression) of Sim2s enhanced and extended lactation performance and survival of mammary epithelial cells (MECs).

View Article and Find Full Text PDF

Background: Breast cancer is a leading cause of cancer-related death for women in the USA. Thus, there is an increasing need to investigate novel prognostic markers and therapeutic methods. Inflammation raises challenges in treating and preventing the spread of breast cancer.

View Article and Find Full Text PDF

There is increasing evidence that genomic instability is a prerequisite for cancer progression. Here we show that SIM2s, a member of the bHLH/PAS family of transcription factors, regulates DNA damage repair through enhancement of homologous recombination (HR), and prevents epithelial-mesenchymal transitions (EMT) in an Ataxia-telangiectasia mutated (ATM)-dependent manner. Mechanistically, we found that SIM2s interacts with ATM and is stabilized through ATM-dependent phosphorylation in response to IR.

View Article and Find Full Text PDF

Neonates of all species, including foals, are highly susceptible to infection, and neutrophils play a crucial role in innate immunity to infection. Evidence exists that neutrophils of neonatal foals are functionally deficient during the first weeks of life, including expression of cytokine genes such as IFNG. We hypothesized that postnatal epigenetic changes were likely to regulate the observed age-related changes in foal neutrophils.

View Article and Find Full Text PDF

The molecular clock plays key roles in daily physiological functions, development and cancer. Period 2 (PER2) is a repressive element, which inhibits transcription activated by positive clock elements, resulting in diurnal cycling of genes. However, there are gaps in our understanding of the role of the clock in normal development outside of its time-keeping function.

View Article and Find Full Text PDF

Background: Rhodococcus equi (R. equi) is an intracellular bacterium that affects young foals and immuno-compromised individuals causing severe pneumonia. Currently, the genetic mechanisms that confer susceptibility and/or resistance to R.

View Article and Find Full Text PDF

Rhodococcus equi preferentially infects macrophages causing pyogranulomatous pneumonia in young foals. Both the vapA and rhbC genes are up-regulated in an iron (Fe)-deprived environment, such as that found within macrophages. Chloroquine (CQ) is a drug widely used against malaria that suppresses the intracellular availability of Fe in eukaryotic cells.

View Article and Find Full Text PDF

In equids, susceptibility to disease caused by Rhodococcus equi occurs almost exclusively in foals. This distribution might be attributable to the age-dependent maturation of immunity following birth undergone by mammalian neonates that renders them especially susceptible to infectious diseases. Expansion and diversification of the neonatal microbiome contribute to development of immunity in the gut.

View Article and Find Full Text PDF

Pneumonia caused by Rhodococcus equi is a common cause of disease and death in foals. Although agent and environmental factors contribute to the incidence of this disease, the genetic factors influencing the clinical outcomes of R. equi pneumonia are ill-defined.

View Article and Find Full Text PDF