Granular hydrogels composed of hydrogel microparticles are promising candidates for 3D bioprinting due to their ability to protect encapsulated cells. However, to achieve high print fidelity, hydrogel microparticles need to jam to exhibit shear-thinning characteristics, which is crucial for 3D printing. Unfortunately, this overpacking can significantly impact cell viability, thereby negating the primary advantage of using hydrogel microparticles to shield cells from shear forces.
View Article and Find Full Text PDFFor the past decade, additive manufacturing has resulted in significant advances toward fabricating anatomic-size patient-specific scaffolds for tissue models and regenerative medicine. This can be attributed to the development of advanced bioinks capable of precise deposition of cells and biomaterials. The combination of additive manufacturing with advanced bioinks is enabling researchers to fabricate intricate tissue scaffolds that recreate the complex spatial distributions of cells and bioactive cues found in the human body.
View Article and Find Full Text PDF