Quantum phases can be classified by topological invariants, which take on discrete values capturing global information about the quantum state. Over the past decades, these invariants have come to play a central role in describing matter, providing the foundation for understanding superfluids, magnets, the quantum Hall effect, topological insulators, Weyl semimetals and other phenomena. Here we report an unusual linking-number (knot theory) invariant associated with loops of electronic band crossings in a mirror-symmetric ferromagnet.
View Article and Find Full Text PDF