Neurodegeneration is the primary driver of disease progression in multiple sclerosis (MS) resulting in permanent disability, creating an urgent need to discover its underlying mechanisms. Herein, we establish that dysfunction of the RNA binding protein heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) results in differential of binding to RNA targets causing alternative RNA splicing, which contributes to neurodegeneration in MS and its models. Using RNAseq of MS brains, we discovered differential expression and aberrant splicing of hnRNP A1 target RNAs involved in neuronal function and RNA homeostasis.
View Article and Find Full Text PDFOligodendrocyte (OL) damage and death are prominent features of multiple sclerosis (MS) pathology, yet mechanisms contributing to OL loss are incompletely understood. Dysfunctional RNA binding proteins (RBPs), hallmarked by nucleocytoplasmic mislocalization and altered expression, have been shown to result in cell loss in neurologic diseases, including in MS. Since we previously observed that the RBP heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) was dysfunctional in neurons in MS, we hypothesized that it might also contribute to OL pathology in MS and relevant models.
View Article and Find Full Text PDFNeurodegeneration, the progressive loss or damage to neurons and axons, underlies permanent disability in multiple sclerosis (MS); yet its mechanisms are incompletely understood. Recent data indicates autoimmunity to several intraneuronal antigens, including the RNA binding protein (RBP) heterogenous nuclear ribonucleoprotein A1 (hnRNP A1), as contributors to neurodegeneration. We previously showed that addition of anti-hnRNP A1 antibodies, which target the same immunodominant domain of MS IgG, to mice with experimental autoimmune encephalomyelitis (EAE) worsened disease and resulted in an exacerbation of hnRNP A1 dysfunction including cytoplasmic mislocalization of hnRNP A1, stress granule (SG) formation and neurodegeneration in the chronic stages of disease.
View Article and Find Full Text PDFNeurodegeneration in multiple sclerosis (MS) is believed to underlie disease progression and permanent disability. Many mechanisms of neurodegeneration in MS have been proposed, such as mitochondrial dysfunction, oxidative stress, neuroinflammation, and RNA-binding protein dysfunction. The purpose of this review is to highlight mechanisms of neurodegeneration in MS and its models, with a focus on RNA-binding protein dysfunction.
View Article and Find Full Text PDFNeurodegeneration, including loss of neurons and axons, is a feature of progressive forms of multiple sclerosis (MS). The mechanisms underlying neurodegeneration are mostly unknown. Research implicates autoimmunity to nonmyelin self-antigens as important contributors to disease pathogenesis.
View Article and Find Full Text PDFAltered stress granule (SG) and RNA-binding protein (RBP) biology have been shown to contribute to the pathogenesis of several neurodegenerative diseases, yet little is known about their role in multiple sclerosis (MS). Pathological features associated with dysfunctional RBPs include RBP mislocalization from its normal nuclear location to the cytoplasm and the formation of chronic SGs. We tested the hypothesis that altered SG and RBP biology might contribute to the neurodegeneration in experimental autoimmune encephalomyelitis (EAE).
View Article and Find Full Text PDF