Trait-based frameworks are increasingly used for predicting how ecological communities respond to ongoing global change. As species range shifts result in novel encounters between predators and prey, identifying prey 'guilds', based on a suite of shared traits, can distill complex species interactions, and aid in predicting food web dynamics. To support advances in trait-based research in open-ocean systems, we present the Pelagic Species Trait Database, an extensive resource documenting functional traits of 529 pelagic fish and invertebrate species in a single, open-source repository.
View Article and Find Full Text PDFTrait-based approaches are increasingly recognized as a tool for understanding ecosystem re-assembly and function under intensifying global change. Here we synthesize trait-based research globally ( = 865 studies) to examine the contexts in which traits may be used for global change prediction. We find that exponential growth in the field over the last decade remains dominated by descriptive studies of terrestrial plant morphology, highlighting significant opportunities to expand trait-based thinking across systems and taxa.
View Article and Find Full Text PDFPredation from the invasive Indo-Pacific lionfish is likely to amplify declines in marine fishes observed in multiple ocean basins. As the invasion intensifies and expands, there is an urgent need to identify species that are most at risk for extirpation-and possible extinction-from this added threat. To address this gap and inform conservation plans, we develop and apply a quantitative framework for classifying the relative vulnerability of fishes based on morphological and behavioural traits known to influence susceptibility to lionfish predation (e.
View Article and Find Full Text PDF