Publications by authors named "Colby Feser"

Recombinant engineering for protein production commonly employs plasmid-based gene templates for introduction and expression of genes in a candidate cell system in vitro. Challenges to this approach include identifying cell types that can facilitate proper post-translational modifications and difficulty expressing large multimeric proteins. We hypothesized that integration of the CRISPR/Cas9-synergistic activator mediator (SAM) system into the human genome would be a powerful tool capable of robust gene expression and protein production.

View Article and Find Full Text PDF

Regulatory T cells (Tregs) promote immune homeostasis by maintaining self-tolerance and regulating inflammatory responses. Under certain inflammatory conditions, Tregs can lose their lineage stability and function. Previous studies have reported that ex vivo exposure to retinoic acid (RA) enhances Treg function and stability.

View Article and Find Full Text PDF

Current hemostatic agents are obtained from pooled plasma from multiple donors requiring costly pathogen screening and processing. Recombinant DNA-based production represents an engineering solution that could improve supply, uniformity, and safety. Current approaches are typically for single gene candidate peptides and often employ non-human cells.

View Article and Find Full Text PDF

Disruption of CCR5 or CXCR4, the main human immunodeficiency virus type 1 (HIV-1) co-receptors, has been shown to protect primary human CD4 T cells from HIV-1 infection. Base editing can install targeted point mutations in cellular genomes, and can thus efficiently inactivate genes by introducing stop codons or eliminating start codons without double-stranded DNA break formation. Here, we applied base editors for individual and simultaneous disruption of both co-receptors in primary human CD4 T cells.

View Article and Find Full Text PDF

Clustered regularly interspaced short palindromic repeat (CRISPR/Cas) proteins can be designed to bind specified DNA and RNA sequences and hold great promise for the accurate detection of nucleic acids for diagnostics. We integrated commercially available reagents into a CRISPR/Cas9-based lateral flow assay that can detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequences with single-base specificity. This approach requires minimal equipment and represents a simplified platform for field-based deployment.

View Article and Find Full Text PDF
Article Synopsis
  • * B7-H4 expression on host hematopoietic cells is crucial for controlling GVHD, as recipients lacking B7-H4 show rapid donor T cell expansion, reduced intestinal integrity, and heightened inflammation.
  • * Despite the severe impact of B7-H4 deficiency on GVHD, the findings indicate that the graft-versus-leukemia response remains unaffected, suggesting potential therapeutic avenues targeting the B7-H4 pathway.
View Article and Find Full Text PDF

Recent studies have underscored the critical role of retinoic acid (RA) in the development of lineage-committed CD4 and CD8 T cells in vivo. We have shown that under acute graft-versus-host disease (GVHD) inflammatory conditions, RA is upregulated in the intestine and is proinflammatory, as GVHD lethality was attenuated when donor allogeneic T cells selectively expressed a dominant negative RA receptor α that blunted RA signaling. RA can function in an autocrine and paracrine fashion, and as such, the host cell lineage responsible for the production of RA metabolism and the specific RA-metabolizing enzymes that potentiate GVHD severity are unknown.

View Article and Find Full Text PDF

Chronic graft-versus-host disease (cGVHD) is a leading cause of morbidity and mortality following allotransplant. Activated donor effector T cells can differentiate into pathogenic T helper (Th)-17 cells and germinal center (GC)-promoting T follicular helper (Tfh) cells, resulting in cGVHD. Phosphoinositide-3-kinase-δ (PI3Kδ), a lipid kinase, is critical for activated T cell survival, proliferation, differentiation, and metabolism.

View Article and Find Full Text PDF

Regulatory T cells (Tregs) are critical for maintaining immune homeostasis. However, current Treg immunotherapies do not optimally treat inflammatory diseases in patients. Understanding the cellular processes that control Treg function may allow for the augmentation of therapeutic efficacy.

View Article and Find Full Text PDF

Gene and cellular therapies hold tremendous promise as agents for treating genetic disorders. However, the effective delivery of genes, particularly large ones, and expression at therapeutic levels can be challenging in cells of clinical relevance. To address this engineering hurdle, we sought to employ the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system to insert powerful regulatory elements upstream of an endogenous gene.

View Article and Find Full Text PDF

Chronic graft-versus-host-disease (cGVHD) can cause multiorgan system disease, typically with autoimmune-like features, resulting in high mortality and morbidity caused by treatment limitations. Invariant natural killer T cells (iNKTs), a small population characterized by expression of a semi-invariant T-cell receptor, rapidly produce copious amounts of diverse cytokines on activation that exert potent immune regulatory function. Here, we show that iNKTs are significantly reduced in a cGVHD murine model that recapitulates several aspects of autoimmunity and organ fibrosis observed in patients with cGVHD.

View Article and Find Full Text PDF

During allogeneic hematopoietic cell transplantation (alloHCT), nonhematopoietic cell interleukin-33 (IL-33) is augmented and released by recipient conditioning to promote type 1 alloimmunity and lethal acute graft-versus-host disease (GVHD). Yet, IL-33 is highly pleiotropic and exhibits potent immunoregulatory properties in the absence of coincident proinflammatory stimuli. We tested whether peri-alloHCT IL-33 delivery can protect against development of GVHD by augmenting IL-33-associated regulatory mechanisms.

View Article and Find Full Text PDF