Publications by authors named "Colbourne F"

Intracerebral hemorrhage (ICH) along with aggravating factors, such as edema, can raise intracranial pressure (ICP) to pathological levels. Diversion of some cerebrospinal fluid (CSF) and venous blood out of the cranium can limit ICP rises while maintaining cerebral perfusion pressure. Brain tissue itself is widely considered immutable in volume but prone to distortion (e.

View Article and Find Full Text PDF

Ketone bodies, or ketones, are an alternative energy source and have several nonmetabolic signaling actions, such as inhibiting inflammation. Because of this, exogenous ketone supplementation has been used to help treat various diseases. β-hydroxybutyrate (βHB) is the major ketone body that has reduced neurological injury and brain edema in animal models of ischemic stroke and traumatic brain injury.

View Article and Find Full Text PDF
Article Synopsis
  • Intracerebral hemorrhage (ICH) is a severe type of stroke with a high mortality rate, leading to complications like increased intracranial pressure (ICP) and poor outcomes for patients.
  • The body's natural responses to manage ICP can become overwhelmed after severe strokes, necessitating clinical interventions, among which hypertonic saline (HTS) is investigated as a potential treatment.
  • In a study with rats experiencing ICH, HTS administration showed no significant improvement in edema, behavior, or brain cell health, suggesting that it does not provide benefits post-ICH.
View Article and Find Full Text PDF

Therapeutic hypothermia (TH) lessens ischemic brain injury. Cytoprotective agents can augment protection, although it is unclear which combinations are most effective. The objective of this study is to identify which cytoprotective drug works best with delayed TH.

View Article and Find Full Text PDF

Malnutrition after stroke may lessen the beneficial effects of rehabilitation on motor recovery through influences on both brain and skeletal muscle. Enriched rehabilitation (ER), a combination of environmental enrichment and forelimb reaching practice, is used preclinically to study recovery of skilled reaching after stroke. However, the chronic food restriction typically used to motivate engagement in reaching practice is a barrier to using ER to investigate interactions between nutritional status and rehabilitation.

View Article and Find Full Text PDF

Few certainties exist regarding the optimal type, timing, or dosage of rehabilitation after stroke. Despite differing injury mechanisms and recovery patterns following ischemic and hemorrhagic stroke, most translational stroke research is conducted after ischemia. As we enter the era of personalized medicine, exploring subtype-specific treatment efficacy is essential to optimizing recovery.

View Article and Find Full Text PDF

Background: After a large intracerebral hemorrhage (ICH), the hematoma and swelling cause intracranial pressure (ICP) to increase, sometimes causing brain herniation and death. This is partly countered by widespread tissue compliance, an acute decrease in tissue volume distal to the stroke, at least in young healthy animals. Intracranial compensation dynamics seem to vary with age, but there is no data on old animals or those with hypertension, major factors influencing ICH risk and outcome.

View Article and Find Full Text PDF

Decades of animal research show therapeutic hypothermia (TH) to be potently neuroprotective after cerebral ischemic injuries. While there have been some translational successes, clinical efficacy after ischemic stroke is unclear. One potential reason for translational failures could be insufficient optimization of dosing parameters.

View Article and Find Full Text PDF

Intracerebral hemorrhage (ICH) is a devastating stroke with many mechanisms of injury. Edema worsens outcome and can lead to mortality after ICH. Glibenclamide (GLC), a sulfonylurea 1- transient receptor potential melastatin 4 (Sur1-Trpm4) channel blocker, has been shown to attenuate edema in ischemic stroke models, raising the possibility of benefit in ICH.

View Article and Find Full Text PDF

Therapeutic hypothermia (TH) mitigates damage in ischemic stroke models. However, safer and easier TH methods (e.g.

View Article and Find Full Text PDF

Background: The formation and degradation of an intracerebral hemorrhage causes protracted cell death, and an extended window for intervention. Experimental studies find that rehabilitation mitigates late cell death, with accelerated hematoma clearance as a potential mechanism.

Objective: We assessed whether early, intense, enriched rehabilitation (ER, environmental enrichment and massed skills training) enhances functional benefit, reduces brain injury, and augments hematoma clearance.

View Article and Find Full Text PDF

Rising intracranial pressure (ICP) aggravates secondary injury and heightens risk of death following intracerebral hemorrhage (ICH). Long-recognized compensatory mechanisms that lower ICP include reduced cerebrospinal fluid and venous blood volumes. Recently, we identified another compensatory mechanism in severe stroke, a decrease in cerebral parenchymal volume via widespread reductions in cell volume and extracellular space (tissue compliance).

View Article and Find Full Text PDF

Patients with intracerebral hemorrhage (ICH) are at increased risk for major ischemic cardiovascular and cerebrovascular events. However, the use of preventative antithrombotic therapy can increase the risk of ICH recurrence and worsen ICH-related outcomes. Colchicine, an anti-inflammatory agent, has the potential to mitigate inflammation-related atherothrombosis and reduce the risk of ischemic vascular events.

View Article and Find Full Text PDF

Background And Purpose: Therapeutic hypothermia (TH), or targeted temperature management (TTM), is a classic treatment option for reducing inflammation and potentially other destructive processes across a wide range of pathologies, and has been successfully used in numerous disease states. The ability for TH to improve neurological outcomes seems promising for inflammatory injuries but has yet to demonstrate clinical benefit in the intracerebral hemorrhage (ICH) patient population. Minimally invasive ICH evacuation also presents a promising option for ICH treatment with strong preclinical data but has yet to demonstrate functional improvement in large randomized trials.

View Article and Find Full Text PDF
Article Synopsis
  • Intracerebral hemorrhage (ICH) comprises 10-15% of strokes and often leads to impairments in survivors, with fever complicating ICH outcomes.
  • A meta-analysis of 21 relevant studies indicates that fever is linked to higher mortality rates in ICH patients but doesn't seem to worsen recovery for those who survive, raising questions about the effects of fever treatment.
  • Methodological inconsistencies and a lack of mechanistic insights in existing research highlight the need for further studies to clarify the role of fever in ICH outcomes.
View Article and Find Full Text PDF

Therapeutic hypothermia (TH) has applications dating back millennia. In modern history, however, TH saw its importation into medical practice where investigations have demonstrated that TH is efficacious in ischemic insults, notably cardiac arrest and hypoxic-ischemic encephalopathy. As well, studies have been undertaken to investigate whether TH can provide benefit in focal stroke (i.

View Article and Find Full Text PDF

Background: Intracerebral hemorrhage remains the deadliest form of stroke worldwide, inducing neuronal death through a wide variety of pathways. Therapeutic hypothermia is a robust and well-studied neuroprotectant widely used across a variety of specialties.

Aims: This review summarizes results from preclinical and clinical studies to highlight the overall effectiveness of therapeutic hypothermia to improve long-term intracerebral hemorrhage outcomes while also elucidating optimal protocol regimens to maximize therapeutic effect.

View Article and Find Full Text PDF

Intracerebral hemorrhage (ICH) is a devastating insult with few effective treatments. Edema and raised intracranial pressure contribute to poor outcome after ICH. Glibenclamide blocks the sulfonylurea 1 transient receptor potential melastatin 4 (Sur1-Trpm4) channel implicated in edema formation.

View Article and Find Full Text PDF

As not all ischemic stroke patients benefit from currently available treatments, there is considerable need for neuroprotective co-therapies. Therapeutic hypothermia is one such co-therapy, but numerous issues have hampered its clinical use (e.g.

View Article and Find Full Text PDF

High intracranial pressure (ICP) can impede cerebral blood flow resulting in secondary injury or death following severe stroke. Compensatory mechanisms include reduced cerebral blood and cerebrospinal fluid volumes, but these often fail to prevent raised ICP. Serendipitous observations in intracerebral hemorrhage (ICH) suggest that neurons far removed from a hematoma may shrink as an ICP compliance mechanism.

View Article and Find Full Text PDF

One major aim of preclinical intracerebral hemorrhage (ICH) research is to develop and test potential neuroprotectants. Published guidelines for experimental design and reporting stress the importance of clearly and completely reporting results and methodological details to ensure reproducibility and maximize information availability. The current review has two objectives: first, to characterize current ICH neuroprotection research and, second, to analyze aspects of translational design in preclinical ICH studies.

View Article and Find Full Text PDF

Localized brain hypothermia (HYPO) can be achieved by infusing cold saline into the carotid artery of animals and patients. Studies suggest that HYPO improves behavioral and histological outcomes in focal ischemia models. Given that ischemic stroke and intracerebral hemorrhage (ICH) share pathophysiological overlap, we tested whether cold saline infusion is safe and neuroprotective when given during collagenase-induced ICH.

View Article and Find Full Text PDF

Purpose Of Review: Therapeutic hypothermia (TH) in stroke demonstrates robust neuroprotection in animals but clinical applications remain controversial. We assessed current literature on the efficacy of TH in ischemic stroke.

Recent Findings: We conducted a meta-analysis comparing TH versus controls in studies published until June 2019.

View Article and Find Full Text PDF

Diffusible ions (Na, K, Mg, Ca, Cl) are vital for healthy function of all cells, especially brain cells. Unfortunately, the diffusible nature of these ions renders them difficult to study with traditional microscopy within brain tissue sections. This mini-review examines the recent progress in the field, using direct elemental mapping techniques to study ion homeostasis during normal brain physiology and pathophysiology, through measurement of ion distribution and concentration in brain tissue sections.

View Article and Find Full Text PDF

Therapeutic hypothermia (TH) is a potent neuroprotectant against multiple forms of brain injury, but in some cases, prolonged cooling is needed. Such cooling protocols raise the risk that TH will directly or indirectly impact neuroplasticity, such as after global and focal cerebral ischemia or traumatic brain injury. TH, depending on the depth and duration, has the potential to broadly affect brain plasticity, especially given the spatial, temporal, and mechanistic overlap with the injury processes that cooling is used to treat.

View Article and Find Full Text PDF