Different Savoyard cheeses are granted with PDO (Protected Designation or Origin) and PGI (Protected Geographical Indication) which guarantees consumers compliance with strict specifications. The use of raw milk is known to be crucial for specific flavor development. To unravel the factors influencing microbial ecosystems across cheese making steps, according to the seasonality (winter and summer) and the mode of production (farmhouse and dairy factory ones), gene targeting on bacteria and fungus was used to have a full picture of 3 cheese making technologies, from the raw milk to the end of the ripening.
View Article and Find Full Text PDFExtensive research has focused on exploring the range of genome sizes in eukaryotes, with a particular emphasis on land plants, where significant variability has been observed. Accurate estimation of genome size is essential for various research purposes, but existing sequence-based methods have limitations, particularly for low-coverage datasets. In this study, we introduce LocoGSE, a novel genome size estimator designed specifically for low-coverage datasets generated by genome skimming approaches.
View Article and Find Full Text PDFSedimentary ancient DNA (sedaDNA) has rarely been used to obtain population-level data due to either a lack of taxonomic resolution for the molecular method used, limitations in the reference material or inefficient methods. Here, we present the potential of multiplexing different PCR primers to retrieve population-level genetic data from sedaDNA samples. Vaccinium uliginosum (Ericaceae) is a widespread species with a circumpolar distribution and three lineages in present-day populations.
View Article and Find Full Text PDFThe question of how local adaptation takes place remains a fundamental question in evolutionary biology. The variation of allele frequencies in genes under selection over environmental gradients remains mainly theoretical and its empirical assessment would help understanding how adaptation happens over environmental clines. To bring new insights to this issue we set up a broad framework which aimed to compare the adaptive trajectories over environmental clines in two domesticated mammal species co-distributed in diversified landscapes.
View Article and Find Full Text PDFLate Pliocene and Early Pleistocene epochs 3.6 to 0.8 million years ago had climates resembling those forecasted under future warming.
View Article and Find Full Text PDFThe European Alps are highly rich in species, but their future may be threatened by ongoing changes in human land use and climate. Here, we reconstructed vegetation, temperature, human impact and livestock over the past ~12,000 years from Lake Sulsseewli, based on sedimentary ancient plant and mammal DNA, pollen, spores, chironomids, and microcharcoal. We assembled a highly-complete local DNA reference library (PhyloAlps, 3923 plant taxa), and used this to obtain an exceptionally rich sedaDNA record of 366 plant taxa.
View Article and Find Full Text PDFWhat drives ecosystem buildup, diversity, and stability? We assess species arrival and ecosystem changes across 16 millennia by combining regional-scale plant sedimentary ancient DNA from Fennoscandia with near-complete DNA and trait databases. We show that postglacial arrival time varies within and between plant growth forms. Further, arrival times were mainly predicted by adaptation to temperature, disturbance, and light.
View Article and Find Full Text PDFEcological niche differences are necessary for stable species coexistence but are often difficult to discern. Models of dietary niche differentiation in large mammalian herbivores invoke the quality, quantity, and spatiotemporal distribution of plant tissues and growth forms but are agnostic toward food plant species identity. Empirical support for these models is variable, suggesting that additional mechanisms of resource partitioning may be important in sustaining large-herbivore diversity in African savannas.
View Article and Find Full Text PDFVertebrate animals are known to consume other species' faeces, yet the role of such coprophagy in species dynamics remains unknown, not least due to the methodological challenges of documenting it. In a large-scale metabarcoding study of red fox and pine marten scats, we document a high occurrence of domestic dog DNA in red fox scats and investigate if it can be attributed to interspecific coprophagia. We tested whether experimental artifacts or other sources of DNA could account for dog DNA, regressed dog occurrence in the diet of fox against that of the fox's main prey, short-tailed field voles, and consider whether predation or scavenging could explain the presence of dog DNA.
View Article and Find Full Text PDFThere is still limited consensus on the evolutionary history of species-rich temperate alpine floras due to a lack of comparable and high-quality phylogenetic data covering multiple plant lineages. Here we reconstructed when and how European alpine plant lineages diversified, i.e.
View Article and Find Full Text PDFLow-coverage whole genome shotgun sequencing (or genome skimming) has emerged as a cost-effective method for acquiring genomic data in nonmodel organisms. This method provides sequence information on chloroplast genome (cpDNA), mitochondrial genome (mtDNA) and nuclear ribosomal regions (rDNA), which are over-represented within cells. However, numerous bioinformatic challenges remain to accurately and rapidly obtain such data in organisms with complex genomic structures and rearrangements, in particular for mtDNA in plants or for cpDNA in some plant families.
View Article and Find Full Text PDFDuring the last glacial-interglacial cycle, Arctic biotas experienced substantial climatic changes, yet the nature, extent and rate of their responses are not fully understood. Here we report a large-scale environmental DNA metagenomic study of ancient plant and mammal communities, analysing 535 permafrost and lake sediment samples from across the Arctic spanning the past 50,000 years. Furthermore, we present 1,541 contemporary plant genome assemblies that were generated as reference sequences.
View Article and Find Full Text PDFMountain environments are marked by an altitudinal zonation of habitat types. They are home to a multitude of terrestrial green algae, who have to cope with abiotic conditions specific to high elevation, e.g.
View Article and Find Full Text PDFHigh-throughput sequencing (HTS) is increasingly being used for the characterization and monitoring of biodiversity. If applied in a structured way, across broad geographical scales, it offers the potential for a much deeper understanding of global biodiversity through the integration of massive quantities of molecular inventory data generated independently at local, regional and global scales. The universality, reliability and efficiency of HTS data can potentially facilitate the seamless linking of data among species assemblages from different sites, at different hierarchical levels of diversity, for any taxonomic group and regardless of prior taxonomic knowledge.
View Article and Find Full Text PDFBignoniaceae species have conserved chloroplast structure, with hotspots of nucleotide diversity. Several genes are under positive selection, and can be targets for evolutionary studies. Bignoniaceae is one of the most species-rich family of woody plants in Neotropical seasonally dry forests.
View Article and Find Full Text PDFKnowledge of how animal species use food resources available in the environment can increase our understanding of many ecological processes. However, obtaining this information using traditional methods is difficult for species feeding on a large variety of food items in highly diverse environments. We amplified the DNA of plants for 306 scat and 40 soil samples, and applied an environmental DNA metabarcoding approach to investigate food preferences, degree of diet specialization and diet overlap of seven herbivore rodent species of the genus Ctenomys distributed in southern and midwestern Brazil.
View Article and Find Full Text PDFGenome skimming has the potential for generating large data sets for DNA barcoding and wider biodiversity genomic studies, particularly via the assembly and annotation of full chloroplast (cpDNA) and nuclear ribosomal DNA (nrDNA) sequences. We compare the success of genome skims of 2051 herbarium specimens from Norway/Polar regions with 4604 freshly collected, silica gel dried specimens mainly from the European Alps and the Carpathians. Overall, we were able to assemble the full chloroplast genome for 67% of the samples and the full nrDNA cluster for 86%.
View Article and Find Full Text PDFThe origin of modern disjunct plant distributions in the Brazilian Highlands with strong floristic affinities to distant montane rainforests of isolated mountaintops in the northeast and northern Amazonia and the Guyana Shield remains unknown. We tested the hypothesis that these unexplained biogeographical patterns reflect former ecosystem rearrangements sustained by widespread plant migrations possibly due to climatic patterns that are very dissimilar from present-day conditions. To address this issue, we mapped the presence of the montane arboreal taxa Araucaria, Podocarpus, Drimys, Hedyosmum, Ilex, Myrsine, Symplocos, and Weinmannia, and cool-adapted plants in the families Myrtaceae, Ericaceae, and Arecaceae (palms) in 29 palynological records during Heinrich Stadial 1 Event, encompassing a latitudinal range of 30°S to 0°S.
View Article and Find Full Text PDFHigh-throughput sequencing of amplicons from environmental DNA samples permits rapid, standardized and comprehensive biodiversity assessments. However, retrieving and interpreting the structure of such data sets requires efficient methods for dimensionality reduction. Latent Dirichlet Allocation (LDA) can be used to decompose environmental DNA samples into overlapping assemblages of co-occurring taxa.
View Article and Find Full Text PDF