The ribotoxin α-sarcin belongs to a family of ribonucleases that cleave the sarcin/ricin loop (SRL), a critical functional rRNA element within the large ribosomal subunit (60S), thereby abolishing translation. Whether α-sarcin targets the SRL only in mature 60S subunits remains unresolved. Here, we show that, in yeast, α-sarcin can cleave SRLs within late 60S pre-ribosomes containing mature 25S rRNA but not nucleolar/nuclear 60S pre-ribosomes containing 27S pre-rRNA in vivo.
View Article and Find Full Text PDFEukaryotic ribosome precursors acquire translation competence in the cytoplasm through stepwise release of bound assembly factors, and proofreading of their functional centers. In case of the pre-60S, these steps include removal of placeholders Rlp24, Arx1 and Mrt4 that prevent premature loading of the ribosomal protein eL24, the protein-folding machinery at the polypeptide exit tunnel (PET), and the ribosomal stalk, respectively. Here, we reveal that sequential ATPase and GTPase activities license release factors Rei1 and Yvh1 to trigger Arx1 and Mrt4 removal.
View Article and Find Full Text PDFThe assembly of large multimeric complexes in the crowded cytoplasm is challenging. Here we reveal a mechanism that ensures accurate production of the yeast proteasome, involving ribosome pausing and co-translational assembly of Rpt1 and Rpt2. Interaction of nascent Rpt1 and Rpt2 then lifts ribosome pausing.
View Article and Find Full Text PDFDisordered extensions at the termini and short internal insertions distinguish eukaryotic ribosomal proteins (r-proteins) from their anucleated archaeal counterparts. Here, we report an NMR structure of such a eukaryotic-specific segment (ESS) in the r-protein eS26 in complex with the escortin Tsr2. The structure reveals how ESS attracts Tsr2 specifically to importin:eS26 complexes entering the nucleus in order to trigger non-canonical RanGTP-independent disassembly.
View Article and Find Full Text PDFEukaryotic ribosome synthesis is a complex, energy-consuming process that takes place across the nucleolus, nucleoplasm and cytoplasm and requires more than 200 conserved assembly factors. Here, we discuss mechanisms by which the ribosome assembly and nucleocytoplasmic transport machineries collaborate to produce functional ribosomes. We also highlight recent cryo-EM studies that provided unprecedented snapshots of ribosomes during assembly and quality control.
View Article and Find Full Text PDFSpatial clustering of ribosomal proteins (r-proteins) through tertiary interactions is a striking structural feature of the eukaryotic ribosome. However, the functional importance of these intricate inter-connections, and how they are established is currently unclear. Here, we reveal that a conserved ATPase, Fap7, organizes interactions between neighboring r-proteins uS11 and eS26 prior to their delivery to the earliest ribosome precursor, the 90S.
View Article and Find Full Text PDFWithin a single generation time a growing yeast cell imports ∼14 million ribosomal proteins (r-proteins) into the nucleus for ribosome production. After import, it is unclear how these intrinsically unstable and aggregation-prone proteins are targeted to the ribosome assembly site in the nucleolus. Here, we report the discovery of a conserved nuclear carrier Tsr2 that coordinates transfer of the r-protein eS26 to the earliest assembling pre-ribosome, the 90S.
View Article and Find Full Text PDFThe ribosome is responsible for the final step of decoding genetic information into proteins. Therefore, correct assembly of ribosomes is a fundamental task for all living cells. In eukaryotes, the construction of the ribosome which begins in the nucleolus requires coordinated efforts of >350 specialized factors that associate with pre-ribosomal particles at distinct stages to perform specific assembly steps.
View Article and Find Full Text PDFInfection of Dictyostelium discoideum with Legionella pneumophila resulted in a large number of differentially regulated genes among them three core autophagy genes, ATG8, ATG9 and ATG16. Macroautophagy contributes to many physiological and pathological processes and might also constitute an important mechanism in cell-autonomous immunity. For further studies we selected the highly conserved ATG9.
View Article and Find Full Text PDF