Publications by authors named "Coge F"

Most of over a thousand mitochondrial proteins are encoded by nuclear genes and must be imported from the cytosol. Little is known about the cytosolic events regulating mitochondrial protein import, partly due to the lack of appropriate tools for its assessment in living cells. We engineered an inducible biosensor for monitoring the main presequence-mediated import pathway with a quantitative, luminescence-based readout.

View Article and Find Full Text PDF

The discovery of novel drugs for neurodegenerative diseases has been a real challenge over the last decades. The development of patient- and/or disease-specific models represents a powerful strategy for the development and validation of lead candidates in preclinical settings. The implementation of a reliable platform modeling dopaminergic neurons will be an asset in the study of dopamine-associated pathologies such as Parkinson's disease.

View Article and Find Full Text PDF

Background And Purpose: Recent crystal structures of GPCRs have emphasized the previously unappreciated role of the second extracellular (E2) loop in ligand binding and gating and receptor activation. Here, we have assessed the role of the E2 loop in the activation of the melatonin MT receptor and in the inactivation of the closely related orphan receptor GPR50.

Experimental Approach: Chimeric MT -GPR50 receptors were generated and functionally analysed in terms of 2-[ I]iodomelatonin binding, G /cAMP signalling and β-arrestin2 recruitment.

View Article and Find Full Text PDF

Autism spectrum disorders affect millions of individuals worldwide, but their heterogeneity complicates therapeutic intervention that is essentially symptomatic. A versatile yet relevant model to rationally screen among hundreds of therapeutic options would help improving clinical practice. Here we investigated whether neurons differentiated from pluripotent stem cells can provide such a tool using SHANK3 haploinsufficiency as a proof of principle.

View Article and Find Full Text PDF

Cardiomyocytes derived from human embryonic stem cells (hESCs) or induced pluripotent stem cells (hiPSCs) are increasingly used for in vitro assays and represent an interesting opportunity to increase the data throughput for drug development. In this work, we describe a 96-well recording of synchronous electrical activities from spontaneously beating hiPSC-derived cardiomyocyte monolayers. The signal was obtained with a fast-imaging plate reader using a submillisecond-responding membrane potential recording assay, FluoVolt, based on a newly derived voltage-sensitive fluorescent dye.

View Article and Find Full Text PDF

Mutations of the PARK2 and PINK1 genes, encoding the cytosolic E3 ubiquitin-protein ligase Parkin and the mitochondrial serine/threonine kinase PINK1, respectively, cause autosomal recessive early-onset Parkinson's disease (PD). Parkin and PINK1 cooperate in a biochemical mitochondrial quality control pathway regulating mitochondrial morphology, dynamics and clearance. This study identifies the multifunctional PD-related mitochondrial matrix enzyme 17-β hydroxysteroid dehydrogenase type 10 (HSD17B10) as a new Parkin substrate.

View Article and Find Full Text PDF

The human thioredoxin (TRX)-interacting protein is found in multiple subcellular compartments and plays a major role in redox homeostasis, particularly in the context of metabolism (e.g., lipidemia and glycemia) and apoptosis.

View Article and Find Full Text PDF

The main melatonin receptors are two G-protein coupled receptors named MT(1) and MT(2). Having described the molecular pharmacology of the human versions of these receptors, we turned to two of the three species most useful in studying melatonin physiology: rat and sheep (a diurnal species used to understand the relationship between circadian rhythm and depression). We also employed previously used compounds to describe the mouse melatonin receptors; despite the early cloning of mouse receptors, few molecular pharmacology studies on these receptors exist.

View Article and Find Full Text PDF
Article Synopsis
  • "Ecstasy" (MDMA) has prosocial effects but also poses risks due to recreational use and has been found to interact with trace amine-1 receptors (TA(1)Rs), which influence dopamine transmission.
  • In experiments with mice, those lacking TA(1)Rs (TA(1)-KO) showed increased dopamine and serotonin release from MDMA compared to normal mice (WT), indicating TA(1)Rs help regulate these neurochemical actions.
  • The study suggests that TA(1)Rs inhibit dopamine and serotonin release, and MDMA may auto-inhibit itself by activating these receptors, offering important insights into the drug's effects in humans.
View Article and Find Full Text PDF

c-Yes, a member of the Src tyrosine kinase family, is found highly activated in colon carcinoma but its importance relative to c-Src has remained unclear. Here we show that, in HT29 colon carcinoma cells, silencing of c-Yes, but not of c-Src, selectively leads to an increase of cell clustering associated with a localisation of β-catenin at cell membranes and a reduction of expression of β-catenin target genes. c-Yes silencing induced an increase in apoptosis, inhibition of growth in soft-agar and in mouse xenografts, inhibition of cell migration and loss of the capacity to generate liver metastases in mice.

View Article and Find Full Text PDF

The development of cell-based assays for high-throughput screening (HTS) approaches often requires the generation of stable transformant cell lines. However, these cell lines are essentially created by random integration of a gene of interest (GOI) with no control over the level and stability of gene expression. The authors developed a targeted integration system in Chinese hamster ovary (CHO) cells, called the cellular genome positioning system (cGPS), based on the stimulation of homologous gene targeting by meganucleases.

View Article and Find Full Text PDF

Quinone reductase 2 is a cytosolic enzyme which catalyses the reduction of quinones, such as menadione and coenzymes Q. Despite a relatively close sequence-based resemblance to NAD(P)H:quinone oxidoreductase 1 (QR1), it has many different features. QR2 is the third melatonin binding site (MT3).

View Article and Find Full Text PDF

Background And Purpose: For many years, it was suspected that sheep expressed only one melatonin receptor (closely resembling MT(1) from other mammal species). Here we report the cloning of another melatonin receptor, MT(2), from sheep.

Experimental Approach: Using a thermo-resistant reverse transcriptase and polymerase chain reaction primer set homologous to the bovine MT(2) mRNA sequence, we have cloned and characterized MT(2) receptors from sheep retina.

View Article and Find Full Text PDF

Melatonin is a neurohormone implicated in both biorhythm synchronization and neuroprotection from oxidative stress. Its functions are mediated by two G-protein-coupled-receptors (MT1 and MT2) and MT3, which corresponds to quinone oxidoreductase 2 (QR2). To determine the binding site of QR2 for melatonin, point mutations of residues crucial for the enzymatic activity of hQR2 were performed.

View Article and Find Full Text PDF

Autotaxin is a type II ectonucleotide pyrophosphate phosphodiesterase enzyme. It has been recently discovered that it also has a lysophospholipase D activity. This enzyme probably provides most of the extracellular lysophosphatidic acid from lysophosphatidylcholine.

View Article and Find Full Text PDF

NRH:quinone oxidoreductase 2 (QR2) is a long forgotten oxidoreductive enzyme that metabolizes quinones and binds melatonin. We used the potency of the RNA interference (RNAi)-mediated gene silencing to build a cellular model in which the role of QR2 could be studied. Because standard approaches were poorly successful, we successively used: (1) two chemically synthesized fluorescent small interfering RNA (siRNA) duplexes designed and tested for their gene silencing capacity leading to a maximal 40% QR2 gene silencing 48h post-transfection; (2) double transfection and cell-sorting of high fluorescent siRNA-transfected HT22 cells further enhancing QR2 RNAi silencing to 88%; (3) stable QR2 knock-down HT22 cell lines established with H1and U6 promoter driven QR2 short hairpin RNA (shRNA) encoding vectors, resulting in a 71-80% reduction of QR2 enzymatic activity in both QR2 shRNA HT22 cells.

View Article and Find Full Text PDF

Autotaxin is a member of the phosphodiesterase family of enzymes, (NPP2). It is an important secreted protein found in conditioned medium from adipocytes. It also has a putative role in the metastatic process.

View Article and Find Full Text PDF

Zhang et al. (Research Articles, 11 November 2005, p. 996) reported that obestatin, a peptide derived from the ghrelin precursor, activated the orphan G protein-coupled receptor GPR39.

View Article and Find Full Text PDF

Background And Purpose: Ivabradine, a specific and use-dependent I(f) inhibitor, exerts anti-ischaemic activity purely by reducing heart rate. The aim of this work was to characterize its effect on the predominant HCN channel isoform expressed in human sino-atrial nodes (hSAN), to determine its kinetics in HCN channels from multicellular preparations and rate-dependency of its action.

Experimental Approach: RT-PCR analysis of the four HCN channel isoforms was carried out on RNAs from hSAN.

View Article and Find Full Text PDF

Stable expression of G protein coupled receptors in cell lines is a crucial tool for the characterization of the molecular pharmacology of receptors and the screening for new antagonists. However, in some instances, many difficulties have been encountered to obtain stable cell lines expressing functional receptors. Here, we addressed the question of vector optimization to establish cell lines expressing the human neuropeptide Y receptor 5 (NPY5-R) or histamine receptor 4 (HH4R).

View Article and Find Full Text PDF

Melatonin acts through a series of molecular targets: the G-protein coupled receptors, MT1 and MT2, and a third binding site, MT3, recently identified as the enzyme NRH:quinone oxydoreductase 2 (QR2). The relationship between the multiple physiological functions of melatonin and this enzyme remains unclear. Because of the relationship of QR2 with the redox status of cells, these studies could bring the first tools for a molecular rationale of the antioxidant effects of melatonin.

View Article and Find Full Text PDF

The catabolism of melatonin, whether naturally occurring or ingested, takes place via two pathways: approximately 70% can be accounted for by conjugation (sulpho- and glucurono-conjugation), and approximately 30% by oxidation. It is commonly thought that the interferon-induced enzyme indoleamine 2,3-dioxygenase (EC 1.13.

View Article and Find Full Text PDF

Alpha1-adrenoceptors are G-protein-coupled receptors that bind catecholamines. Sixteen distinct human alpha1A-adrenoceptor isoforms have been identified from human tissues, including five full-length and 11 truncated versions. An updated scheme for the identification of alpha1A-adrenoceptor splice variants is proposed.

View Article and Find Full Text PDF

1. Endothelin-1 (ET-1) and tumor necrosis factor alpha (TNFalpha) by their action on adipocytes have been independently linked to the pathogenesis of insulino-resistance. In isolated adipocytes, TNFalpha induces the expression of the inducible nitric oxide synthase (iNOS).

View Article and Find Full Text PDF

Matrix metalloproteinases (MMPs) constitute a large family of extracellular matrix degrading proteases implicated in a number of physiological and pathological processes, including angiogenesis. However, the relative importance of the individual MMPs in vessel formation is poorly understood. Using the three-dimensional rat aortic model, the role of the MMPs in angiogenesis in vitro was investigated both by the use of synthetic MMP inhibitors, and by a study of the expression of nine MMPs and three of their endogenous inhibitors (the TIMPs) during vessel formation.

View Article and Find Full Text PDF