Publications by authors named "Coffer P"

Galectins, glycan-binding proteins, have been identified as critical regulators of the immune system. Recently, Galectin-9 (Gal-9) has emerged as biomarker that correlates with disease severity in a range of inflammatory conditions. However, Gal-9 has highly different roles in the context of immunoregulation, with the potential to either stimulate or suppress the immune response.

View Article and Find Full Text PDF

The cytokine interferon-gamma (IFNγ) plays a multifaceted role in intestinal immune responses ranging from anti- to pro-inflammatory depending on the setting. Here, using a 3D co-culture system based on human intestinal epithelial organoids, we explore the capacity of IFNγ-exposure to reprogram intestinal epithelia and thereby directly modulate lymphocyte responses. IFNγ treatment of organoids led to transcriptional reprogramming, marked by a switch to a pro-inflammatory gene expression profile, including transcriptional upregulation of the chemokines CXCL9, CXCL10, and CXCL11.

View Article and Find Full Text PDF

The intestine is vulnerable to chemotherapy-induced damage due to the high rate of intestinal epithelial cell (IEC) proliferation. We have developed a human intestinal organoid-based 3D model system to study the direct effect of chemotherapy-induced IEC damage on T cell behavior. Exposure of intestinal organoids to busulfan, fludarabine, and clofarabine induced damage-related responses affecting both the capacity to regenerate and transcriptional reprogramming.

View Article and Find Full Text PDF

N6-methyladenosine (m6A) is a RNA modification that can regulate post-transcriptional processes including RNA stability, translation, splicing, and nuclear export. In CD4+ lymphocytes, m6A modifications have been demonstrated to play a role in early differentiation processes. The role of m6A in CD4+ T cell activation and effector function remains incompletely understood.

View Article and Find Full Text PDF

The cytokine interferon-gamma (IFNγ) plays a multifaceted role in intestinal immune responses ranging from anti-to pro-inflammatory depending on the setting. Here, using a 3D co-culture system based on human intestinal epithelial organoids, we explore the capacity of IFNγ-exposure to reprogram intestinal epithelia and thereby directly modulate lymphocyte responses. IFNγ treatment of organoids led to transcriptional reprogramming, marked by a switch to a pro-inflammatory gene expression profile, including transcriptional upregulation of the chemokines CXCL9, CXCL10, and CXCL11.

View Article and Find Full Text PDF

Upon antigen-specific T cell receptor (TCR) engagement, human CD4 T cells proliferate and differentiate, a process associated with rapid transcriptional changes and metabolic reprogramming. Here, we show that the generation of extramitochondrial pyruvate is an important step for acetyl-CoA production and subsequent H3K27ac-mediated remodeling of histone acetylation. Histone modification, transcriptomic, and carbon tracing analyses of pyruvate dehydrogenase (PDH)-deficient T cells show PDH-dependent acetyl-CoA generation as a rate-limiting step during T activation.

View Article and Find Full Text PDF

The intestine is vulnerable to chemotherapy-induced toxicity due to its high epithelial proliferative rate, making gut toxicity an off-target effect in several cancer treatments, including conditioning regimens for allogeneic hematopoietic cell transplantation (allo-HCT). In allo-HCT, intestinal damage is an important factor in the development of Graft-versus-Host Disease (GVHD), an immune complication in which donor immune cells attack the recipient's tissues. Here, we developed a novel human intestinal organoid-based 3D model system to study the direct effect of chemotherapy-induced intestinal epithelial damage on T cell behavior.

View Article and Find Full Text PDF

Objectives: How the local inflammatory environment regulates epigenetic changes in the context of inflammatory arthritis remains unclear. Here we assessed the transcriptional and active enhancer profile of monocytes derived from the inflamed joints of JIA patients, a model well-suited for studying inflammatory arthritis.

Methods: RNA sequencing and H3K27me3 chromatin immunoprecipitation sequencing (ChIP-seq) were used to analyse the transcriptional and epigenetic profile, respectively, of JIA synovial fluid-derived monocytes.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is a heterogeneous disease with one of the highest rates of incidence and mortality among cancers worldwide. Understanding the CRC tumor microenvironment (TME) is essential to improve diagnosis and treatment. Within the CRC TME, tumor-infiltrating lymphocytes (TILs) consist of a heterogeneous mixture of adaptive immune cells composed of mainly anti-tumor effector T cells (CD4+ and CD8+ subpopulations), and suppressive regulatory CD4+ T (Treg) cells.

View Article and Find Full Text PDF

Autophagy is a highly conserved process that mediates the targeting and degradation of intracellular components to lysosomes, contributing to the maintenance of cellular homeostasis and to obtaining energy, which ensures viability under stress conditions. Therefore, autophagy defects are common to different neurodegenerative disorders. Rnd3 belongs to the family of Rho GTPases, involved in the regulation of actin cytoskeleton dynamics and important in the modulation of cellular processes such as migration and proliferation.

View Article and Find Full Text PDF

In this issue of Cell Metabolism, Hochrein et al. identify a metabolic checkpoint controlling the transcriptional programming of effector CD4 T cells. The authors show that GLUT3-mediated glucose import and ACLY-dependent acetyl-CoA generation control histone acetylation and, hence, the epigenetic imprinting of effector gene expression in differentiated effector CD4 T cells.

View Article and Find Full Text PDF

In breast cancer the transcription factor SOX4 has been shown to be associated with poor survival, increased tumor size and metastasis formation. This has mostly been attributed to the ability of SOX4 to regulate Epithelial-to-Mesenchymal-Transition (EMT). However, SOX4 regulates target gene transcription in a context-dependent manner that is determined by the cellular and epigenetic state.

View Article and Find Full Text PDF

Extracellular signals such as TGF-β can induce epithelial-to-mesenchymal transition (EMT) in cancers of epithelial origin, promoting molecular and phenotypical changes resulting in pro-metastatic characteristics. We identified C/EBPα as one of the most TGF-β-mediated downregulated transcription factors in human mammary epithelial cells. C/EBPα expression prevents TGF-β-driven EMT by inhibiting expression of known EMT factors.

View Article and Find Full Text PDF

The clinical use of histone deacetylase inhibitors (HDACi) for the treatment of bone marrow failure and hematopoietic malignancies has increased dramatically over the last decades. Nonetheless, their effects on normal myelopoiesis remain poorly evaluated. Here, we treated cord blood derived CD34+ progenitor cells with two chemically distinct HDACi inhibitors MS-275 or SAHA and analyzed their effects on the transcriptome (RNA-seq), epigenome (H3K27ac ChIP-seq) and functional and morphological characteristics during neutrophil development.

View Article and Find Full Text PDF

Background: Acute myeloid leukemia (AML) is a heterogeneous disease regarding morphology, immunophenotyping, genetic abnormalities, and clinical behavior. The overall survival rate of pediatric AML is 60% to 70%, and has not significantly improved over the past two decades. Children with Down syndrome (DS) are at risk of developing acute megakaryoblastic leukemia (AMKL), which can be preceded by a transient myeloproliferative disorder during the neonatal period.

View Article and Find Full Text PDF

The Foxp3 transcription factor is a crucial determinant of both regulatory T (T) cell development and their functional maintenance. Appropriate modulation of tolerogenic immune responses therefore requires the tight regulation of Foxp3 transcriptional output, and this involves both transcriptional and post-translational regulation. Here, we show that during T cell activation, phosphorylation of Foxp3 in T cells can be regulated by a TGF-β activated kinase 1 (TAK1)-Nemo-like kinase (NLK) signaling pathway.

View Article and Find Full Text PDF

The expression of the transcription factor is increased in many human cancers, however, the pro-oncogenic capacity of SOX4 can vary greatly depending on the type of tumor. Both the contextual nature and the mechanisms underlying the pro-oncogenic SOX4 response remain unexplored. Here, we demonstrate that in mammary tumorigenesis, the SOX4 transcriptional network is dictated by the epigenome and is enriched for pro-angiogenic processes.

View Article and Find Full Text PDF

SOX4 has been shown to promote neuronal differentiation both in the adult and embryonic neural progenitors. Ectopic SOX4 expression has also been shown to inhibit oligodendrocyte differentiation in mice, however the underlying molecular mechanisms remain poorly understood. Here we demonstrate that SOX4 regulates transcriptional targets associated with neural development in neural stem cells (NSCs), reducing the expression of genes promoting oligodendrocyte differentiation.

View Article and Find Full Text PDF

T cell factor, the effector transcription factor of the WNT signaling pathway, was so named because of the primary observation that it is indispensable for T cell development in the thymus. Since this discovery, the role of this signaling pathway has been extensively studied in T cell development, hematopoiesis, and stem cells; however, its functional role in mature T cells has remained relatively underinvestigated. Over the last few years, various studies have demonstrated that T cell factor can directly influence T cell function and the differentiation of Th1, Th2, Th17, regulatory T cell, follicular helper CD4 T cell subsets, and CD8 memory T cells.

View Article and Find Full Text PDF

Chronic inflammatory diseases are characterized by recurrent inflammatory attacks in the tissues mediated by autoreactive T cells. Identity and functional programming of CD8+ T cells at the target site of inflammation still remain elusive. One key question is whether, in these antigen-rich environments, chronic stimulation leads to CD8+ T cell exhaustion comparable to what is observed in infectious disease contexts.

View Article and Find Full Text PDF

T-cell acute lymphoblastic leukemia (T-ALL) constitutes an aggressive subset of ALL, the most frequent childhood malignancy. Whereas interleukin-7 (IL-7) is essential for normal T-cell development, it can also accelerate T-ALL development in vivo and leukemia cell survival and proliferation by activating phosphatidylinositol 3-kinase/protein kinase B/mechanistic target of rapamycin signaling. Here, we investigated whether STAT5 could also mediate IL-7 T-ALL-promoting effects.

View Article and Find Full Text PDF

Lymphocytes have evolved to react rapidly and robustly to changes in their local environment by using transient adaptations and by regulating their terminal differentiation programmes. Forkhead box transcription factors (FTFs) can direct leukocyte-specific responses, and their functional diversification promotes a high degree of context-dependent specification. Many, often antagonistic, FTFs have overlapping expression patterns and can thereby compete for binding to the same chromosomal target sequences.

View Article and Find Full Text PDF

Macroautophagy (hereafter autophagy) is a lysosomal degradation pathway critical for maintaining cellular homeostasis and viability, and is predominantly regarded as a rapid and dynamic cytoplasmic process. To increase our understanding of the transcriptional and epigenetic events associated with autophagy, we performed extensive genome-wide transcriptomic and epigenomic profiling after nutrient deprivation in human autophagy-proficient and autophagy-deficient cells. We observed that nutrient deprivation leads to the transcriptional induction of numerous autophagy-associated genes.

View Article and Find Full Text PDF

Expression of the transcription factor SOX4 is often elevated in human cancers, where it generally correlates with tumor-progression and poor-disease outcome. Reduction of SOX4 expression results in both diminished tumor-incidence and metastasis. In breast cancer, TGF-β-mediated induction of SOX4 has been shown to contribute to epithelial-to-mesenchymal transition (EMT), which controls pro-metastatic events.

View Article and Find Full Text PDF

In response to activation, CD4 T cells upregulate autophagy. However, the functional consequences of that upregulation have not been fully elucidated. In this study, we identify autophagy as a tolerance-avoidance mechanism.

View Article and Find Full Text PDF