Publications by authors named "Coeshott C"

Background: Prior studies have demonstrated improved efficacy when intra-articular (IA) therapeutics are injected using ultrasound (US) guidance. The aim of this study was to determine if clinical improvement in pain and function after IA hyaluronic acid injections using US is associated with changes in SF volumes and biomarker proteins at 3 months.

Methods: 49 subjects with symptomatic knee OA, BMI < 40, and KL radiographic grade II or III participated.

View Article and Find Full Text PDF

GI-4000, a series of recombinant yeast expressing four different mutated RAS proteins, was evaluated in subjects with resected -mutated pancreas cancer. Subjects ( = 176) received GI-4000 or placebo plus gemcitabine. Subjects' tumors were genotyped to identify which matched GI-4000 product to administer.

View Article and Find Full Text PDF

Absence or reduced frequency of human regulatory T cells (Tregs) can limit the control of inflammatory responses, autoimmunity, and the success of transplant engraftment. Clinical studies indicate that use of Tregs as immunotherapeutics would require billions of cells per dose. The Quantum® Cell Expansion System (Quantum system) is a hollow-fiber bioreactor that has previously been used to grow billions of functional T cells in a short timeframe, 8-9 d.

View Article and Find Full Text PDF

Background: The rapid evolution of cell-based immunotherapies such as chimeric antigen receptor T-cells for treatment of hematological cancers has precipitated the need for a platform to expand these cells ex vivo in a safe, efficient, and reproducible manner. In the Quantum Cell Expansion System (Quantum system) we evaluated the expansion of T-cells from healthy donors in a functionally-closed environment that reduces time and resources needed to produce a therapeutic dose.

Methods: Mononuclear cells from leukapheresis products from 5 healthy donors were activated with anti-CD3/CD28 Dynabeads and expanded in the Quantum system for 8-9 days using xeno-free, serum-free medium and IL-2.

View Article and Find Full Text PDF

The addition of a coating reagent to promote cell adherence is necessary to prepare the membrane surface of the Quantum® Cell Expansion System hollow-fiber bioreactor for the culture of mesenchymal stem cells. In this study, the efficacy of 8 potential coating reagents has been compared in terms of the doubling times of their cell populations, cell morphology, characterization via flow cytometry, and capacity for trilineage differentiation. Human fibronectin (FN), pooled human cryoprecipitate (CPPT), and recombinant human vitronectin (VN) were successful as coating reagents, and each product has advantages in different cell culture contexts.

View Article and Find Full Text PDF

Purpose Of Review: Recent developments in regenerative medicine have precipitated the need to expand gene-modified human T cells to numbers that exceed the capacity of well-plate-based, and flask-based processes. This review discusses the changes in process development that are needed to meet the cell expansion requirements by utilizing . Maintenance of cell proliferation over long periods can become limited by unfilled demands for nutrients and oxygen and by the accumulation of waste products in the local environment.

View Article and Find Full Text PDF

We are developing whole, heat-killed, recombinant Saccharomyces cerevisiae yeast, engineered to encode target proteins, which stimulate immune responses against malignant cells expressing those targets. This phase 1 trial, enrolling patients with advanced colorectal or pancreas cancer, was designed to evaluate safety, immunogenicity, response, and overall survival of ascending doses of the GI-4000 series of products, which express 3 different forms of mutated Ras proteins. The study enrolled 33 heavily pretreated subjects (14 with pancreas and 19 with colorectal cancer), whose tumors were genotyped before enrollment to identify the specific ras mutation and thereby to identify which GI-4000 product to administer.

View Article and Find Full Text PDF

Chronic hepatitis B infection (CHB) is characterized by sub-optimal T cell responses to viral antigens. A therapeutic vaccine capable of restoring these immune responses could potentially improve HBsAg seroconversion rates in the setting of direct acting antiviral therapies. A yeast-based immunotherapy (Tarmogen) platform was used to make a vaccine candidate expressing hepatitis B virus (HBV) X, surface (S), and Core antigens (X-S-Core).

View Article and Find Full Text PDF

Background: GS-4774 is a recombinant, heat-killed, yeast-based immunotherapy engineered to express hepatitis B virus (HBV)-specific antigens. GS-4774 is being developed as a therapeutic vaccine for chronic HBV infection. The aim of this study was to assess the safety, tolerability and immunogenicity of GS-4774 in healthy subjects.

View Article and Find Full Text PDF

Introduction: Patients with early-stage lung cancer have a high risk of recurrence despite multimodality therapy. KRAS-mutant lung adenocarcinomas are the largest genetically defined subgroup, representing 25% of patients. GI-4000 is a heat-killed recombinant Saccharomyces cerevisiae yeast-derived vaccine expressing mutant KRAS proteins.

View Article and Find Full Text PDF

We have developed a vaccine delivery system based on the non-ionic block copolymer, Pluronic F127 (F127), combined with selected immunomodulators. F127-based matrices are characterized by a phenomenon known as reverse thermogelation, whereby the formulation undergoes a phase transition from liquid to gel upon reaching physiological temperatures. Protein antigens (tetanus toxoid (TT), diphtheria toxoid (DT) and anthrax recombinant protective antigen (rPA)) were formulated with F127 in combination with CpG motifs or chitosan, as examples of immunomodulators, and were compared to more traditional adjuvants in mice.

View Article and Find Full Text PDF

The potential to generate both a systemic and local immune response makes the mucosal system an attractive site for immunization. However, mucosal administration of protein and peptide antigens generally results in a poor immune response. Successful mucosal vaccination is therefore largely dependent on the development of effective mucosal adjuvants.

View Article and Find Full Text PDF

There is currently a need for vaccines that stimulate cell-mediated immunity-particularly that mediated by CD8+ cytotoxic T lymphocytes (CTLs)-against viral and tumor antigens. The optimal induction of cell-mediated immunity requires the presentation of antigens by specialized cells of the immune system called dendritic cells (DCs). DCs are unique in their ability to process exogenous antigens via the major histocompatibility complex (MHC) class I pathway as well as in their ability to activate naive, antigen-specific CD8+ and CD4+ T cells.

View Article and Find Full Text PDF

Two important cytokines mediating inflammation are tumor necrosis factor alpha (TNFalpha) and IL-1beta, both of which require conversion to soluble forms by converting enzymes. The importance of TNFalpha-converting enzyme and IL-1beta-converting enzyme in the production of circulating TNFalpha and IL-1beta in response to systemic challenges has been demonstrated by the use of specific converting enzyme inhibitors. Many inflammatory responses, however, are not systemic but instead are localized.

View Article and Find Full Text PDF

This study was undertaken to determine the nature of the antigens recognized in allogeneic and syngeneic mixed leukocyte reactions (MLR). Specifically, we wished to determine whether Ia antigens alone were recognized by MLR-reactive T cells, or whether the specificity was determined by the corecognition of non-MHC antigens together with syngeneic or allogeneic Ia. To do this we used 11 T cell hybrids that were characterized as being specific for Iad and were tested their capacity to respond to isolated I-Ad or I-Ed that had been incorporated into liposomes and had bound to the surface of glass beads.

View Article and Find Full Text PDF

Antibody inhibition studies were done to determine which molecules on the surface of the T cell hybridomas other than their receptors for antigen plus IAd were involved in interaction with antigen-presenting B cells, with artificial IAd membranes on glass beads, or with anti-receptor antibodies coupled to Sepharose beads. We found that T cell LFA-1 was only involved when B cells were used to present antigen plus IAd, whereas T cell L3T4 was involved in the response of T cells to antigen plus IAd either on cells or in artificial membranes, but not if anti-receptor antibodies were used to stimulate the T cells. From these results we concluded that LFA-1 may be involved in the recognition of a ligand on cells that was not present in artificial membranes, but that L3T4 might interact with a nonpolymorphic portion of class II molecules present in both intact antigen-presenting cells and the antigen-presenting artificial membranes.

View Article and Find Full Text PDF

The role of Ia in T cell activation was investigated by incorporating affinity-purified I-Ad molecules into synthetic liposomal membranes and by using these as antigen-presenting units. IL 2 production by I-Ad-restricted, chicken ovalbumin-specific T cell hybridomas was measured in a system in which antigen processing by the presenter was not required. I-Ad-bearing liposomes were found to have no antigen-presenting capacity.

View Article and Find Full Text PDF

Mice of one allotype (Igb) were immunized against immunoglobulin from a congenic strain of mice bearing another allotype (Iga). This Igb anti-Iga response was profoundly suppressed by injecting lymphoid cells from congenic Iga mice but not by serum Iga. Suppression was specific, could be induced by congenic B cells but not histoincompatible lymphoid cells and depended both on the time of administration of cells relative to immunogenic challenge and to the number of cells injected.

View Article and Find Full Text PDF

A method is described to bring about endogenous production of antibodies to the Fc region of IgG. Mice of one allotype (Igb) were immunized against immunoglobulin from a congenic strain of mice bearing another allotype (Iga). The Iga-primed cells were transferred to congenic recipients bearing the Iga allotype and the production of anti-host allotype antibodies by the donor cells measured.

View Article and Find Full Text PDF