Publications by authors named "Coen Paulusma"

Article Synopsis
  • * Blood enters the liver through the periportal zone, flows through the mid-zone, and exits via the pericentral zone, with metabolite transport being crucial for liver function and division of labor among these zones.
  • * Recent advancements in technology have improved understanding of how metabolic processes are organized in different liver zones, despite ongoing challenges in studying them separately, particularly regarding signaling pathways and the effects of daily rhythms on liver function.
View Article and Find Full Text PDF

Aims: Patients with mutations in ATP8B1 develop progressive familial intrahepatic cholestasis type 1 [PFIC1], a severe liver disease that requires life-saving liver transplantation. PFIC1 patients also present with gastrointestinal problems, including intestinal inflammation and diarrhoea, which are aggravated after liver transplantation. Here we investigate the intestinal function of ATP8B1 in relation to inflammatory bowel diseases.

View Article and Find Full Text PDF

Bile salts have an established role in the emulsification and intestinal absorption of dietary lipids, and their homeostasis is tightly controlled by various transporters and regulators in the enterohepatic circulation. Notably, emerging evidence points toward bile salts as major modulators of cardiometabolic disease (CMD), an umbrella disease of disorders affecting the heart and blood vessels that is caused by systemic metabolic diseases such as Type 2 diabetes mellitus (T2DM) and metabolic dysfunction-associated steatotic liver disease (MASLD), the latter encompassing also metabolic dysfunction-associated steatohepatitis (MASH). The underlying mechanisms of protective effects of bile salts are their hormonal properties, enabling them to exert versatile metabolic effects by activating various bile salt-responsive signaling receptors with the nuclear farnesoid X receptor (FXR) and the Takeda G-protein-coupled receptor 5 (TGR5) as most extensively investigated.

View Article and Find Full Text PDF

ATP8B1 is a phospholipid flippase that is deficient in patients with progressive familial intrahepatic cholestasis type 1 (PFIC1). PFIC1 patients suffer from severe liver disease but also present with dyslipidemia, including low plasma cholesterol, of yet unknown etiology. Here we show that ATP8B1 knockdown in HepG2 cells leads to a strong increase in the mitochondrial oxidative phosphorylation (OXPHOS) without a change in glycolysis.

View Article and Find Full Text PDF

ATP8B1 is a phospholipid flippase and member of the type 4 subfamily of P-type ATPases (P4-ATPase) subfamily. P4-ATPases catalyze the translocation of phospholipids across biological membranes, ensuring proper membrane asymmetry, which is crucial for membrane protein targeting and activity, vesicle biogenesis, and barrier function. Here we have investigated the role of ATP8B1 in the endolysosomal pathway in macrophages.

View Article and Find Full Text PDF

The liver controls the systemic exposure of amino acids entering via the gastro-intestinal tract. For most amino acids except branched chain amino acids, hepatic uptake is very efficient. This implies that the liver orchestrates amino acid metabolism and also controls systemic amino acid exposure.

View Article and Find Full Text PDF

Accumulation of neurotoxic bilirubin due to a transient neonatal or persistent inherited deficiency of bilirubin glucuronidation activity can cause irreversible brain damage and death. Strategies to inhibit bilirubin production and prevent neurotoxicity in neonatal and adult settings seem promising. We evaluated the impact of deficiency in neonatal and aged mice, in a background of unconjugated hyperbilirubinemia, by abolishing bilirubin production.

View Article and Find Full Text PDF

Background & Aims: Annexin A11 was identified as autoantigen in IgG4-related cholangitis (IRC), a B-cell driven disease. Annexin A11 modulates calcium-dependent exocytosis, a crucial mechanism for insertion of proteins into their target membranes. Human cholangiocytes form an apical 'biliary bicarbonate umbrella' regarded as defense against harmful hydrophobic bile acid influx.

View Article and Find Full Text PDF

Myoblast fusion is essential for the formation of multinucleated muscle fibers and is promoted by transient changes in the plasma membrane lipid distribution. However, little is known about the lipid transporters regulating these dynamic changes. Here, we show that proliferating myoblasts exhibit an aminophospholipid flippase activity that is downregulated during differentiation.

View Article and Find Full Text PDF

Liver fibrosis is characterized by the accumulation of extracellular matrix proteins, mainly composed of collagen. Hepatic stellate cells (HSCs) mediate liver fibrosis by secreting collagen. Vitamin C (ascorbic acid) is a cofactor of prolyl-hydroxylases that modify newly synthesized collagen on the route for secretion.

View Article and Find Full Text PDF

Hydrophobic bile salts are considered to promote liver fibrosis in cholestasis. However, evidence for this widely accepted hypothesis remains scarce. In established animal models of cholestasis, e.

View Article and Find Full Text PDF

The nuclear receptor Farnesoid X Receptor (FXR) is activated by bile acids and controls multiple metabolic processes, including bile acid, lipid, carbohydrate, amino acid and energy metabolism. Vitamin A is needed for proper metabolic and immune control and requires bile acids for efficient intestinal absorption and storage in the liver. Here, we analyzed whether FXR regulates vitamin A metabolism.

View Article and Find Full Text PDF

Active secretion of bile salts into the canalicular lumen drives bile formation and promotes biliary cholesterol and phospholipid output. Disrupting hepatic bile salt uptake, by inhibition of sodium-taurocholate cotransporting polypetide (NTCP; Slc10a1) with Myrcludex B, is expected to limit bile salt flux through the liver and thereby to decrease biliary lipid excretion. Here, we show that Myrcludex B-mediated NTCP inhibition actually causes an increase in biliary cholesterol and phospholipid excretion whereas biliary bile salt output and bile salt composition remains unchanged.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) released by cells have a role in intercellular communication to regulate a wide range of biological processes. Two types of EVs can be recognized. Exosomes, which are released from multi-vesicular bodies upon fusion with the plasma membrane, and ectosomes, which directly bud from the plasma membrane.

View Article and Find Full Text PDF

Background & Aims: Progressive familial intrahepatic cholestasis type 3 (PFIC3), for which there are limited therapeutic options, often leads to end-stage liver disease before adulthood due to impaired ABCB4-dependent phospholipid transport to bile. Using adeno-associated virus serotype 8 (AAV8)-mediated gene therapy, we aimed to restore the phospholipid content in bile to levels that prevent liver damage, thereby enabling stable hepatic ABCB4 expression and long-term correction of the phenotype in a murine model of PFIC3.

Methods: Ten-week-old Abcb4 mice received a single dose of AAV8-hABCB4 (n = 10) or AAV8-GFP (n = 7) under control of a liver specific promoter via tail vein injection.

View Article and Find Full Text PDF

We present the first patient with a defect in the Na+-taurocholate cotransporting polypeptide SLC10A1 (NTCP), which plays a key role in the enterohepatic circulation of bile salts. The clinical presentation of the child was mild and the child showed no signs of liver dysfunction or pruritus despite extremely elevated plasma bile salt levels (>100-fold upper-limit of normal). A homozygous point mutation was found in the SLC10A1 gene (resulting in amino acid change R252H) and functional studies confirmed the pathogenicity of the mutation.

View Article and Find Full Text PDF

Background & Aims: In the normal liver, hepatocytes form a uniquely polarised cell layer that enables movement of solutes from sinusoidal blood to canalicular bile. Whilst several cholestatic liver diseases with defects of hepatocyte polarity have been identified, the molecular mechanisms of pathogenesis are not well defined. One example is arthrogryposis, renal dysfunction and cholestasis syndrome, which in most patients is caused by VPS33B mutations.

View Article and Find Full Text PDF

P4-ATPases are lipid flippases that catalyze the transport of phospholipids to create membrane phospholipid asymmetry and to initiate the biogenesis of transport vesicles. Here we show, for the first time, that lipid flippases are essential to dampen the inflammatory response and to mediate the endotoxin-induced endocytic retrieval of Toll-like receptor 4 (TLR4) in human macrophages. Depletion of CDC50A, the β-subunit that is crucial for the activity of multiple P4-ATPases, resulted in endotoxin-induced hypersecretion of proinflammatory cytokines, enhanced MAP kinase signaling and constitutive NF-κB activation.

View Article and Find Full Text PDF

Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disorder. It is uncertain if simple steatosis, the initial and prevailing form of NAFLD, sensitizes the liver to cholestasis. Here, we compared the effects of obstructive cholestasis in rats with a normal liver versus rats with simple steatosis induced by a methionine/choline-deficient diet.

View Article and Find Full Text PDF

Progressive familial intrahepatic cholestasis type 1 (PFIC1) is caused by mutations in the gene encoding the phospholipid flippase ATP8B1. Apart from severe cholestatic liver disease, many PFIC1 patients develop extrahepatic symptoms characteristic of cystic fibrosis (CF), such as pulmonary infection, sweat gland dysfunction and failure to thrive. CF is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), a chloride channel essential for epithelial fluid transport.

View Article and Find Full Text PDF

Unlabelled: Anion exchanger 2 (AE2), the principal bicarbonate secretor in the human biliary tree, is down-regulated in primary biliary cholangitis. AE2 creates a "bicarbonate umbrella" that protects cholangiocytes from the proapoptotic effects of bile salts by maintaining them deprotonated. We observed that knockdown of AE2 sensitized immortalized H69 human cholangiocytes to not only bile salt-induced apoptosis (BSIA) but also etoposide-induced apoptosis.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionv7kjv7nt6hkhc6nho33240s7n6425rs5): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once