Previous work has shown that certain β(3)-peptides can effectively mimic the side chain display of an α-helix and inhibit interactions between proteins, both in vitro and in cultured cells. Here we describe a β(3)-peptide analog of GLP-1, CC-3(Act), that interacts with the GLP-1R extracellular domain (nGLP-1R) in vitro in a manner that competes with exendin-4 and induces GLP-1R-dependent cAMP signaling in cultured CHO-K1 cells expressing GLP-1R.
View Article and Find Full Text PDFThe stability and stoichiometry of β(3)-peptide bundles is influenced by side-chain identity. β(3)-peptides containing β(3)-homoleucine on one helical face assemble into octamers, whereas those containing β(3)-homovaline form tetramers. From a structural perspective, the side chains of β(3)-homoleucine and β(3)-homovaline differ in terms of both side-chain length and γ-carbon branching.
View Article and Find Full Text PDFWe reported recently that certain β(3) -peptides self-assemble in aqueous solution into discrete bundles of unique structure and defined stoichiometry. The first β-peptide bundle reported was the octameric Zwit-1F, whose fold is characterized by a well-packed, leucine-rich core and a salt-bridge-rich surface. Close inspection of the Zwit-1F structure revealed four nonideal interhelical salt-bridge interactions whose heavy atom-heavy atom distances were longer than found in natural proteins of known structure.
View Article and Find Full Text PDFWe reported recently that certain beta-peptides self-assemble spontaneously into cooperatively folded bundles whose kinetic and thermodynamic metrics mirror those of natural helix bundle proteins. The structures of four such beta-peptide bundles are known in atomic detail. These structures reveal a solvent-sequestered, hydrophobic core stabilized by a unique arrangement of leucine side chains and backbone methylene groups.
View Article and Find Full Text PDFBeta-peptides possess several features that are desirable in peptidomimetics; they are easily synthesized, fold into stable secondary structures in physiologic buffers, and resist proteolysis. They can also bind to a diverse array of proteins to inhibit their interactions with alpha-helical ligands. beta-peptides are usually not cell-permeable, however, and this feature limits their utility as research tools and potential therapeutics.
View Article and Find Full Text PDFCurr Opin Chem Biol
December 2007