Publications by authors named "Cody D Moorman"

Article Synopsis
  • Tolerogenic vaccines aim to create immune tolerance specifically for disease-related antigens, offering a safer alternative to broad immunosuppression, which can lead to infections and weakened anti-tumor responses.
  • They work by promoting certain immune cells that help regulate and suppress harmful immune responses, thus targeting conditions like autoimmunity and transplant rejection.
  • The design of these vaccines varies, often involving a relevant antigen paired with a tolerogenic adjuvant that enhances their effectiveness by creating a more favorable immune response through multiple mechanisms.
View Article and Find Full Text PDF

Conventional type 1 dendritic cells (DC1) contribute to the development of pathogenic T helper type 1 (Th1) cells in part the production of the proinflammatory cytokine interleukin-12. Thus, depletion of DC1 has the potential to dampen autoimmune responses. Here, we developed X-C motif chemokine receptor 1 (XCR1)-specific chimeric antigen receptor (CAR)-T cells and CAR-Tregs that specifically targeted DC1.

View Article and Find Full Text PDF

Autoimmune diseases affect roughly 5-10% of the total population, with women affected more than men. The standard treatment for autoimmune or autoinflammatory diseases had long been immunosuppressive agents until the advent of immunomodulatory biologic drugs, which aimed at blocking inflammatory mediators, including proinflammatory cytokines. At the frontier of these biologic drugs are TNF-α blockers.

View Article and Find Full Text PDF

Low-zone IL-2 signaling is key to understanding how CD4 CD25 FOXP3 regulatory T cells (Tregs) exhibit dominance and overgrow conventional effector T cells (Tcons) that typically express lower levels of the IL-2 receptor alpha chain (i.e., CD25).

View Article and Find Full Text PDF

FOXP3 regulatory T cells (Tregs) constitute a critical barrier that enforces tolerance to both the self-peptidome and the extended-self peptidome to ensure tissue-specific resistance to autoimmune, allergic, and other inflammatory disorders. Here, we review intuitive models regarding how T cell antigen receptor (TCR) specificity and antigen recognition efficiency shape the Treg and conventional T cell (Tcon) repertoires to adaptively regulate T cell maintenance, tissue-residency, phenotypic stability, and immune function in peripheral tissues. Three zones of TCR recognition efficiency are considered, including Tcon recognition of specific low-efficiency self MHC-ligands, Treg recognition of intermediate-efficiency agonistic self MHC-ligands, and Tcon recognition of cross-reactive high-efficiency agonistic foreign MHC-ligands.

View Article and Find Full Text PDF

Background: Tolerogenic vaccines represent antigen-specific interventions designed to re-establish self-tolerance and thereby alleviate autoimmune diseases, which collectively comprise over 100 chronic inflammatory diseases afflicting more than 20 million Americans. Tolerogenic vaccines comprised of single-chain GM-CSF-neuroantigen (GMCSF-NAg) fusion proteins were shown in previous studies to prevent and reverse disease in multiple rodent models of experimental autoimmune encephalomyelitis (EAE) by a mechanism contingent upon the function of CD4 CD25 FOXP3 regulatory T cells (Tregs). GMCSF-NAg vaccines inhibited EAE in both quiescent and inflammatory environments in association with low-efficiency T cell receptor (TCR) signaling events that elicited clonal expansion of immunosuppressive Tregs.

View Article and Find Full Text PDF

Previous studies showed that single-chain fusion proteins comprised of GM-CSF and major encephalitogenic peptides of myelin, when injected subcutaneously in saline, were potent tolerogenic vaccines that suppressed experimental autoimmune encephalomyelitis (EAE) in rats and mice. These tolerogenic vaccines exhibited dominant suppressive activity in inflammatory environments even when emulsified in Complete Freund's Adjuvant (CFA). The current study provides evidence that the mechanism of tolerance was dependent upon vaccine-induced regulatory CD25 T cells (Tregs), because treatment of mice with the Treg-depleting anti-CD25 mAb PC61 reversed tolerance.

View Article and Find Full Text PDF

FOXP3 regulatory T cells (Tregs) represent a promising platform for effective adoptive immunotherapy of chronic inflammatory disease, including autoimmune diseases such as multiple sclerosis. Successful Treg immunotherapy however requires new technologies to enable long-term expansion of stable, antigen-specific FOXP3 Tregs in cell culture. Antigen-specific activation of naïve T cells in the presence of TGF-β elicits the initial differentiation of the FOXP3 lineage, but these Treg lines lack phenotypic stability and rapidly transition to a conventional T cell (Tcon) phenotype during propagation.

View Article and Find Full Text PDF

This study introduces a flexible format for tolerogenic vaccination that incorporates IFN-β and neuroantigen (NAg) in the Alum adjuvant. Tolerogenic vaccination required all three components, IFN-β, NAg, and Alum, for inhibition of experimental autoimmune encephalomyelitis (EAE) and induction of tolerance. Vaccination with IFN-β + NAg in Alum ameliorated NAg-specific sensitization and inhibited EAE in C57BL/6 mice in pretreatment and therapeutic regimens.

View Article and Find Full Text PDF