The amount of SARS-CoV-2 in a sample is often measured using Ct values. However, the same Ct value may correspond to different viral loads on different platforms and assays, making them difficult to compare from study to study. To address this problem, we developed , a Python package that converts Ct values to viral loads for any RT-qPCR assay/platform.
View Article and Find Full Text PDFCell Mol Gastroenterol Hepatol
December 2022
Background & Aims: Metabolic reprogramming, in particular, glycolytic regulation, supports abnormal survival and growth of hepatocellular carcinoma (HCC) and could serve as a therapeutic target. In this study, we sought to identify glycolytic regulators in HCC that could be inhibited to prevent tumor progression and could also be monitored in vivo, with the goal of providing a theragnostic alternative to existing therapies.
Methods: An orthotopic HCC rat model was used.
Purpose: To evaluate the use of hyperpolarized [1-C]pyruvate magnetic resonance spectroscopic imaging (HP-C MRSI) for quantitative measurement of early changes in glycolytic metabolism and its ability to predict response to pan-tyrosine kinase inhibitor (Pan-TKI) therapy in gastric cancer (GCa).
Procedures: Pan-TKI afatinib-sensitive NCI-N87 and resistant SNU16 human GCa cells were assessed for GLUT1, hexokinase-II (HKII), lactate dehydrogenase (LDHA), phosphorylated AKT (pAKT), and phosphorylated MAPK (pMAPK) at 0-72 h of treatment with 0.1 μM afatinib.
The continued need for molecular testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the potential for self-collected saliva as an alternative to nasopharyngeal (NP) swabs for sample acquisition led us to compare saliva to NP swabs in an outpatient setting without restrictions to avoid food, drink, smoking, or tooth-brushing. A total of 385 pairs of NP and saliva specimens were obtained, the majority from individuals presenting for initial evaluation, and were tested on two high-sensitivity reverse transcriptase PCR (RT-PCR) platforms, the Abbott m2000 and Abbott Alinity m (both with limits of detection [LoD] of 100 copies of viral RNA/ml). Concordance between saliva and NP swabs was excellent overall (Cohen's κ = 0.
View Article and Find Full Text PDFIn many tumors, cancer cells take up large quantities of glucose and metabolize it into lactate, even in the presence of sufficient oxygen to support oxidative metabolism. It has been hypothesized that this malignant metabolic phenotype supports cancer growth and metastasis, and that reversal of this so-called "Warburg effect" may selectively harm cancer cells. Conversion of glucose to lactate can be reduced by ablation or inhibition of lactate dehydrogenase (LDH), the enzyme responsible for conversion of pyruvate to lactate at the endpoint of glycolysis.
View Article and Find Full Text PDFThe urgent need for large-scale diagnostic testing for SARS-CoV-2 has prompted interest in sample collection methods of sufficient sensitivity to replace nasopharynx (NP) sampling. Nasal swab samples are an attractive alternative; however, previous studies have disagreed over how nasal sampling performs relative to NP sampling. Here, we compared nasal versus NP specimens collected by health care workers in a cohort of individuals clinically suspected of COVID-19 as well as SARS-CoV-2 reverse transcription (RT)-PCR-positive outpatients undergoing follow-up.
View Article and Find Full Text PDFBackground: Resolving the coronavirus disease 2019 (COVID-19) pandemic requires diagnostic testing to determine which individuals are infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The current gold standard is to perform reverse-transcription polymerase chain reaction (PCR) on nasopharyngeal samples. Best-in-class assays demonstrate a limit of detection (LoD) of approximately 100 copies of viral RNA per milliliter of transport media.
View Article and Find Full Text PDFThe urgent need for large-scale diagnostic testing for SARS-CoV-2 has prompted pursuit of sample-collection methods of sufficient sensitivity to replace sampling of the nasopharynx (NP). Among these alternatives is collection of nasal-swab samples, which can be performed by the patient, avoiding the need for healthcare personnel and personal protective equipment. Previous studies have reached opposing conclusions regarding whether nasal sampling is concordant or discordant with NP.
View Article and Find Full Text PDFResolving the COVID-19 pandemic requires diagnostic testing to determine which individuals are infected and which are not. The current gold standard is to perform RT-PCR on nasopharyngeal samples. Best-in-class assays demonstrate a limit of detection (LoD) of ~100 copies of viral RNA per milliliter of transport media.
View Article and Find Full Text PDFThe SARS-CoV-2 pandemic has caused a severe international shortage of the nasopharyngeal swabs that are required for collection of optimal specimens, creating a critical bottleneck in the way of high-sensitivity virological testing for COVID-19. To address this crisis, we designed and executed an innovative, radically cooperative, rapid-response translational-research program that brought together healthcare workers, manufacturers, and scientists to emergently develop and clinically validate new swabs for immediate mass production by 3D printing. We performed a rigorous multi-step preclinical evaluation on 160 swab designs and 48 materials from 24 companies, laboratories, and individuals, and shared results and other feedback via a public data repository (http://github.
View Article and Find Full Text PDFThe pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a severe international shortage of the nasopharyngeal swabs that are required for collection of optimal specimens, creating a critical bottleneck blocking clinical laboratories' ability to perform high-sensitivity virological testing for SARS-CoV-2. To address this crisis, we designed and executed an innovative, cooperative, rapid-response translational-research program that brought together health care workers, manufacturers, and scientists to emergently develop and clinically validate new swabs for immediate mass production by 3D printing. We performed a multistep preclinical evaluation of 160 swab designs and 48 materials from 24 companies, laboratories, and individuals, and we shared results and other feedback via a public data repository (http://github.
View Article and Find Full Text PDFWhile decades of research have identified molecular pathways inducing and promoting stages of prostate cancer malignancy, studies addressing dynamic changes of cancer-related regulatory factors in a prostate tumor progression model are limited. Using the TRAMP mouse model of human prostate cancer, we address mechanisms of deregulation for the cancer-associated transcription factors, Runx1 and Runx2 by identifying microRNAs with reciprocal expression changes at six time points during 33 weeks of tumorigenesis. We molecularly define transition stages from PIN lesions to hyperplasia/neoplasia and progression to adenocarcinoma by temporal changes in expression of human prostate cancer markers, including the androgen receptor and tumor suppressors, Nkx3.
View Article and Find Full Text PDF