Publications by authors named "Codrin Andrei"

Macroscopically long wire-like arrangements of gold nanoparticles were obtained by controlled evaporation and partial coalescence of an aqueous colloidal solution of capped CTAB-Au nanorods onto a functionalised 3-mercaptopropyl trimethoxysilane (MPTMS) silicon substrate, using a removable, silicon wafer with a hydrophobic surface that serves as a "handrail" for the initial nanorods' linear self-assembly. The wire-like structures display a quasi-continuous pattern by thermal annealing of the gold nanorods when the solvent (i.e.

View Article and Find Full Text PDF

A substantial and stable increase of the current density Jsc of ruthenium (Ru) dye sensitized solar cells (DSC) of up to 16.18% and of the power efficiency of up to 25.5% is demonstrated in this article via plasmonic enhancement.

View Article and Find Full Text PDF

Dye sensitised solar cells (DSCs) typically include a mesoporous titanium dioxide (TiO2) scaffold, sensitised with an adsorbed dye, as the main active element responsible for the photon absorption and charge separation functionalities. The sintering process employed in the TiO2 active layer fabrication plays a crucial role in the formation of the nanoparticle (NP) scaffold and hence in the performance of a dye sensitised solar cell, as it allows the particles to form efficient inter-crystalline electric contacts providing high electron conductivity. Furthermore, the DSC design requires a conductive transparent top electrode which is typically made of fluorinated stannic oxide.

View Article and Find Full Text PDF

Dye sensitised solar cells (DSSCs) use a mesoporous TiO(2) scaffold, typically assisted by an adsorbed dye, as the main active element, responsible for the photon absorption, exciton generation and charge separation functionality. The sintering process employed in the TiO(2) active layer fabrication plays a crucial role in the formation of the nanoparticle scaffold and hence the performance of a dye sensitised solar cell, as it allows the particles to form efficient inter-crystalline electric contacts to provide high electron conductivity. The sintering temperature, with typical values in the range of 450-600 degrees C, is of particular importance for the formation as it reduces the amount of unwanted organics between the individual crystallites and determines the formation of interfaces between the nanoparticles.

View Article and Find Full Text PDF