World J Microbiol Biotechnol
July 2023
Cyanobacterial harmful algal blooms (CHABs) are a global environmental concern that encompasses public health issues, water availability, and water quality owing to the production of various secondary metabolites (SMs), including cyanotoxins in freshwater, brackish water, and marine ecosystems. The frequency, extent, magnitude, and duration of CHABs are increasing globally. Cyanobacterial species traits and changing environmental conditions, including anthropogenic pressure, eutrophication, and global climate change, together allow cyanobacteria to thrive.
View Article and Find Full Text PDFCyanobacteria commonly form large blooms in waterbodies; they can produce cyanotoxins, with toxic effects on humans and animals, and volatile compounds, causing bad tastes and odors (T&O) at naturally occurring low concentrations. Notwithstanding the large amount of literature on either cyanotoxins or T&O, no review has focused on them at the same time. The present review critically evaluates the recent literature on cyanotoxins and T&O compounds (geosmin, 2-methylisoborneol, β-ionone and β-cyclocitral) to identify research gaps on harmful exposure of humans and animals to both metabolite classes.
View Article and Find Full Text PDFGlobal eutrophication and climate warming exacerbate production of cyanotoxins such as microcystins (MCs), presenting risks to human and animal health. Africa is a continent suffering from severe environmental crises, including MC intoxication, but with very limited understanding of the occurrence and extent of MCs. By analysing 90 publications from 1989 to 2019, we found that in various water bodies where MCs have been detected so far, the concentrations were 1.
View Article and Find Full Text PDFEutrophicated waters frequently support bloom-forming cyanobacteria, many of which produce potent cyanobacterial toxins (cyanotoxins). Cyanotoxins can cause adverse health effects in a wide range of organisms where the toxins may target the liver, other internal organs, mucous surfaces and the skin and nervous system. This review surveyed more than 100 studies concerning the cardiovascular toxicity of cyanotoxins and related topics.
View Article and Find Full Text PDFCyanobacteria are an ancient clade of photosynthetic prokaryotes, present in many habitats throughout the world, including water resources. They can present health hazards to humans and animals due to the production of a wide range of toxins (cyanotoxins), including the diaminoacid neurotoxin, 3-N-methyl-2,3-diaminopropanoic acid (β-N-methylaminoalanine, BMAA). Knowledge of the biosynthetic pathway for BMAA, and its role in cyanobacteria, is lacking.
View Article and Find Full Text PDFCyanobacteria are an ancient clade of photosynthetic prokaryotes, whose worldwide occurrence, especially in water, presents health hazards to humans and animals due to the production of a range of toxins (cyanotoxins). These include the sometimes co-occurring, non-encoded diaminoacid neurotoxins 2,4-diaminobutanoic acid (2,4-DAB) and its structural analogue β-N-methylaminoalanine (BMAA). Knowledge of the biosynthetic pathway for 2,4-DAB, and its role in cyanobacteria, is lacking.
View Article and Find Full Text PDFMicrocystis spp., are Gram-negative, oxygenic, photosynthetic prokaryotes which use solar energy to convert carbon dioxide (CO) and minerals into organic compounds and biomass. Eutrophication, rising CO concentrations and global warming are increasing Microcystis blooms globally.
View Article and Find Full Text PDFToxin-producing cyanobacteria in aquatic, terrestrial, and aerial environments can occur alongside a wide range of additional health hazards including biological agents and synthetic materials. Cases of intoxications involving cyanobacteria and cyanotoxins, with exposure to additional hazards, are discussed. Examples of the co-occurrence of cyanobacteria in such combinations are reviewed, including cyanobacteria and cyanotoxins plus algal toxins, microbial pathogens and fecal indicator bacteria, metals, pesticides, and microplastics.
View Article and Find Full Text PDFThe environmental distribution of the neurotoxic amino acid, 3--methyl-2,3-diaminopropanoic acid (BMAA), first isolated in 1967, was initially believed to be limited to tropical and subtropical plants of the genus The seeds of one such species, which had been used historically on the Pacific island of Guam as a foodstuff, had a reputation for neurotoxicity. Some 40 years later the amino acid was detected in terrestrial and aquatic cyanobacteria and in other aquatic organisms. Overlooked was the discovery of BMAA in peptides of bizarre structure that had been isolated in 1975 from during a search for antibiotics.
View Article and Find Full Text PDFCyanobacteria are photoautotrophic organisms which occur in aquatic and terrestrial environments. They have the potential to produce toxins which pose a threat to human and animal health. This review covers the global distribution of the common cyanotoxins and related poisoning cases.
View Article and Find Full Text PDFCyanobacteria can form dense and sometimes toxic blooms in freshwater and marine environments, which threaten ecosystem functioning and degrade water quality for recreation, drinking water, fisheries and human health. Here, we review evidence indicating that cyanobacterial blooms are increasing in frequency, magnitude and duration globally. We highlight species traits and environmental conditions that enable cyanobacteria to thrive and explain why eutrophication and climate change catalyse the global expansion of cyanobacterial blooms.
View Article and Find Full Text PDFCyanobacteria are present in many aquatic ecosystems in Serbia. Lake Ludoš, a wetland area of international significance and an important habitat for waterbirds, has become the subject of intense research interest because of practically continuous blooming of cyanobacteria. Analyses of water samples indicated a deterioration of ecological condition and water quality, and the presence of toxin-producing cyanobacteria (the most abundant Limnothrix redekei, Pseudanabaena limnetica, Planktothrix agardhii and Microcystis spp.
View Article and Find Full Text PDFThe non-encoded diaminomonocarboxylic acids, 3-N-methyl-2,3-diaminopropanoic acid (syn: α-amino-β-methylaminopropionic acid, MeDAP; β-N-methylaminoalanine, BMAA) and 2,4-diaminobutanoic acid (2,4-DAB), are distributed widely in cyanobacterial species in free and bound forms. Both amino acids are neurotoxic in whole animal and cell-based bioassays. The biosynthetic pathway to 2,4-DAB is well documented in bacteria and in one higher plant species, but has not been confirmed in cyanobacteria.
View Article and Find Full Text PDFMany degraded waterbodies around the world are subject to strong proliferations of cyanobacteria - notorious for their toxicity, high biomass build-up and negative impacts on aquatic food webs - the presence of which puts serious limits on the human use of affected water bodies. Cyanobacterial blooms are largely regarded as trophic dead ends since they are a relatively poor food source for zooplankton. As a consequence, their population dynamics are generally attributed to changes in abiotic conditions (bottom-up control).
View Article and Find Full Text PDFCyanobacteria can produce toxic metabolites known as cyanotoxins. Common and frequently investigated cyanotoxins include microcystins (MCs), nodularin (NOD) and saxitoxins (STXs). During the summer of 2011 extensive cyanobacterial growth was found in several fishponds in Serbia.
View Article and Find Full Text PDFBlooms of cyanobacteria have been documented throughout history, all over the world. Mass populations of these organisms typically present hazards to human health and are known for the production of a wide range of highly toxic metabolites-cyanotoxins, of which among the most common and most investigated are the microcystins. The toxicity of the family of microcystin congeners to animal and cell models has received much attention; however, less is known about their negative effects on human health, whether via acute or chronic exposure.
View Article and Find Full Text PDFThis paper presents a case study of a massive fish mortality during a Cylindrospermopsis raciborskii bloom in Aleksandrovac Lake, Serbia in mid-December 2012. According to a preliminary investigation of the samples taken on November 6 before the fish mortalities and to extended analyses of samples taken on November 15, no values of significant physicochemical parameters emerged to explain the cause(s) of the fish mortality. No industrial pollutants were apparent at this location, and results excluded the likelihood of bacterial infections.
View Article and Find Full Text PDFMicrocystin (MC) accumulation was determined in the liver and muscle of two omnivorous fish species which are consumed and are economically important, and in a planktivorous-carnivorous fish from Lake Eğirdir, Turkey. Free extractable MCs in fish tissue samples were detected by enzyme-linked immunosorbent assay (ELISA) with confirmation by high performance liquid chromatography with photodiode array detection (HPLC-PDA). MC-LA and -YR, were detected in both liver and muscle, followed by MCs -LY, -LF, -RR and -LR respectively.
View Article and Find Full Text PDFMicrocystins are the most commonly encountered water-borne cyanotoxins which present short- and long-term risks to human health. Guidelines at international and national level, and legislation in some countries, have been introduced for the effective health risk management of these potent hepatotoxic, tumour-promoters. The stable cyclic structure of microcystins and their common production by cyanobacteria in waterbodies at times of high total dissolved organic carbon content presents challenges to drinking water treatment facilities, with conventional, advanced and novel strategies under evaluation.
View Article and Find Full Text PDFWhile toxins from aquatic cyanobacteria are a well-recognised cause of disease in birds and animals, exposure of grazing livestock to terrestrial cyanobacteria has not been described. This study identified terrestrial cyanobacteria, predominantly Phormidium spp., in the biofilm of plants from most livestock fields investigated.
View Article and Find Full Text PDFAmyotroph Lateral Scler Frontotemporal Degener
September 2013
There is a broad scientific consensus that amyotrophic lateral sclerosis (ALS) is caused by gene-environment interactions. Mutations in genes underlying familial ALS (fALS) have been discovered in only 5-10% of the total population of ALS patients. Relatively little attention has been paid to environmental and lifestyle factors that may trigger the cascade of motor neuron death leading to the syndrome of ALS, although exposure to chemicals including lead and pesticides, and to agricultural environments, smoking, certain sports, and trauma have all been identified with an increased risk of ALS.
View Article and Find Full Text PDFThe Lesser Flamingo (Phoeniconaias minor) is known to use cyanobacteria (primarily Arthrospira) as a major food source in the East African Rift Valley lakes. Periodically, mass mortalities have occurred, associated with the cyanobacterial toxins (cyanotoxins), microcystins and anatoxin-a. Deposition of these cyanotoxins into P.
View Article and Find Full Text PDF