Publications by authors named "Cocuzza M"

MEMS devices are more and more commonly used as sensors, actuators, and microfluidic devices in different fields like electronics, opto-electronics, and biomedical engineering. Traditional fabrication technologies cannot meet the growing demand for device miniaturisation and fabrication time reduction, especially when customised devices are required. That is why additive manufacturing technologies are increasingly applied to MEMS.

View Article and Find Full Text PDF

Several diseases affect the alveoli, and the efficacy of medical treatments and pharmaceutical therapies is hampered by the lack of pre-clinical models able to recreate the diseases. Microfluidic devices, mimicking the key structural and compositional features of the alveoli, offer several advantages to medium and high-throughput analysis of new candidate therapies. Here, we developed an alveolus-on-a-chip recapitulating the microanatomy of the physiological tissue by including the epithelium, the fibrous interstitial layer and the capillary endothelium.

View Article and Find Full Text PDF

: Dry eye disease (DED) affects 5-50% of the global population and deeply influences everyday life activities. This study compared the efficacy, tolerability, and safety of novel Respilac artificial tears containing lipidure and hypromellose (HPMC) with the widely used Nextal artificial tears, which are also HPMC-based, for the treatment of moderate DED in contact lenses (CL) wearers. : In a prospective, single-center, randomized investigation, 30 patients aged ≥18 years, diagnosed with moderate DED, and wearing CL were randomly assigned to the Respilac ( = 15) or Nextal group ( = 15).

View Article and Find Full Text PDF

The global COVID-19 pandemic has had severe consequences from the social and economic perspectives, compelling the scientific community to focus on the development of effective diagnostics that can combine a fast response and accurate sensitivity/specificity performance. Presently available commercial antigen-detecting rapid diagnostic tests (Ag-RDTs) are very fast, but still face significant criticisms, mainly related to their inability to amplify the protein signal. This translates to a limited sensitive outcome and, hence, a reduced ability to hamper the spread of SARS-CoV-2 infection.

View Article and Find Full Text PDF

Transglutaminase 2 (TG2) is a ubiquitously expressed member of the transglutaminase family with Ca2+-dependent protein crosslinking activity. Its subcellular localization is crucial in determining its function, and indeed, TG2 is found in the extracellular matrix, mitochondria, recycling endosomes, plasma membrane, cytosol, and nucleus because it is associated with cell growth, differentiation, and apoptosis. It is involved in several pathologies, such as celiac disease, cardiovascular, hepatic, renal, and fibrosis diseases, carrying out opposite functions of up and down regulation in the progression of the same pathology.

View Article and Find Full Text PDF

Deterministic lateral displacement (DLD) is a passive separation method that separates particles by hydrodynamic size. This label-free method is a promising technique for cell separation because of its high size resolution and insensitivity to flow rate. Development of capillary-driven microfluidic technologies allows microfluidic devices to be operated without any external power for fluid pumping, lowering their total cost and complexity.

View Article and Find Full Text PDF

In recent years, studies concerning Organic Bioelectronics have had a constant growth due to the interest in disciplines such as medicine, biology and food safety in connecting the digital world with the biological one. Specific interests can be found in organic neuromorphic devices and organic transistor sensors, which are rapidly growing due to their low cost, high sensitivity and biocompatibility. This trend is evident in the literature produced in Italy, which is full of breakthrough papers concerning organic transistors-based sensors and organic neuromorphic devices.

View Article and Find Full Text PDF

Despite solid scientific evidence, the concepts of treatment as prevention (TASP) and Undetectable = Untransmittable (U = U) remain unfamiliar and underutilized for some healthcare providers. We conducted a self-completion survey to evaluate the knowledge of TASP/U = U in different medical specialties. Wilcoxon Rank-Sum, Chi-square and Fisher's exact tests were used for group comparisons and a logistic regression model was used to assess factors independently associated with U = U-non-supportive attitudes.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) mainly develops in the head of the pancreas, within the acino-ductal unit composed of acinar and ductal cells surrounded by pancreatic stellate cells (PSCs). PSCs strongly influence the tumor microenvironment by triggering an intense stromal deposition, which plays a key role in tumor progression and limits drug perfusion. We have developed a microfluidic model recreating the tumor-stroma crosstalk to replicate the steps of PDAC evolution towards the establishment of an efficient platform for innovative therapy validation.

View Article and Find Full Text PDF

Varicocele has been extensively described and studied as the most important reversible cause of male infertility. Its impact on semen parameters, pregnancy rates, and assisted reproductive outcomes have been associated with multifactorial aspects, most of them converging to increase of reactive oxygen species (ROS). More recently, sperm DNA fragmentation has gained significant attention and potential clinical use, although the body of evidence still needs further evolution.

View Article and Find Full Text PDF

In biosensing applications, the exploitation of organic transistors gated via a liquid electrolyte has increased in the last years thanks to their enormous advantages in terms of sensitivity, low cost and power consumption. However, a practical aspect limiting the use of these devices in real applications is the contamination of the organic material, which represents an obstacle for the realization of a portable sensing platform based on electrolyte-gated organic transistors (EGOTs). In this work, a novel contamination-free microfluidic platform allowing differential measurements is presented and validated through finite element modeling simulations.

View Article and Find Full Text PDF

In this paper, for the first time to the best of our knowledge, organic electrochemical transistors are employed to investigate the electrical response of human blood, plasma and alternative buffer solutions that inhibit red blood cell (RBC) aggregation. Our focus is on selecting a suitable electrolytic platform and the related operating conditions, where the RBC effect on the OECT response can be observed separately from the strong ionic environment of plasma in whole blood. The transient response of whole blood to pulse experiments is characterized by two time constants, which can be related to blood viscosity and to the capacitive coupling between the ionic and electronic components of the overall system.

View Article and Find Full Text PDF

This work illustrates focalization performances of a silicon-based bulk acoustic wave device applied for the separation of specimens owing to micrometric dimensions. Samples are separated in the microfluidic channel by the presence of an acoustic field, which focalizes particles or cells according to their mechanical properties compared to the surrounded medium ones. Design and fabrication processes are reported, followed by focalization performance tests conducted either with synthetic particles or cells.

View Article and Find Full Text PDF

Miniaturized low-cost sensors for volatile organic compounds (VOCs) have the potentiality to become a fundamental tool for indoor and outdoor air quality monitoring, to significantly improve everyday life. Layered double hydroxides (LDHs) belong to the class of anionic clays and are largely employed for NO detection, while few results are reported on VOCs. In this work, a novel LDH coprecipitation method is proposed.

View Article and Find Full Text PDF

Mucopolysaccharidosis III (Sanfilippo syndromes) types A-D are rare lysosomal storage disorders characterized by heparan sulfate accumulation and neurodegeneration. Patients with MPS III present with developmental stagnation and/or regression, sleep disturbance, and behavioral abnormalities usually in the first years of life. Epilepsy may occur in a proportion of patients during the disease course.

View Article and Find Full Text PDF

In several biomedical applications, the detection of biomarkers demands high sensitivity, selectivity and easy-to-use devices. Organic electrochemical transistors (OECTs) represent a promising class of devices combining a minimal invasiveness and good signal transduction. However, OECTs lack of intrinsic selectivity that should be implemented by specific approaches to make them well suitable for biomedical applications.

View Article and Find Full Text PDF

Initially considered little more than a scientific curiosity, the family of 2D nanomaterials has become increasingly popular over the last decade [...

View Article and Find Full Text PDF

We report on the preparation and stereolithographic 3D printing of a resin based on the composite between a poly(ethylene glycol) diacrylate (PEGDA) host matrix and a poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) filler, and the related cumulative volatile organic compounds' (VOCs) adsorbent properties. The control of all the steps for resin preparation and printing through morphological (SEM), structural (Raman spectroscopy) and functional (I/V measurements) characterizations allowed us to obtain conductive 3D objects of complex and reproducible geometry. These systems can interact with chemical vapors in the long term by providing a consistent and detectable variation of their structural and conductive characteristics.

View Article and Find Full Text PDF

Rapid Prototyping (RP) promises to induce a revolutionary impact on how the objects can be produced and used in industrial manufacturing as well as in everyday life. Over the time a standard technique as the 3D Stereolithography (SL) has become a fundamental technology for RP and Additive Manufacturing (AM), since it enables the fabrication of the 3D objects from a cost-effective photocurable resin. Efforts to obtain devices more complex than just a mere aesthetic simulacre, have been spent with uncertain results.

View Article and Find Full Text PDF

Purpose: Growing evidence in the literature suggests that obesity is capable of altering reproductive hormone levels and male fertility. Effects on classic semen parameters and sperm DNA fragmentation (SDF), however, have not been properly established. Additionally, the impact of bariatric surgery (BS) on those parameters is still controversial.

View Article and Find Full Text PDF

The present work describes a novel microfluidic free-flow electrophoresis device developed by applying three-dimensional (3D) printing technology to rapid prototype a low-cost chip for micro- and nanoparticle collection and analysis. Accurate reproducibility of the device design and the integration of the inlet and outlet ports with the proper tube interconnection was achieved by the additive manufacturing process. Test prints were performed to compare the glossy and the matte type of surface finish.

View Article and Find Full Text PDF

Objective: To gain insight into the causes of infertility in Prune Belly Syndrome (PBS) by evaluating reproductive system anatomy and gonadal function in a cohort of postpubertal PBS patients.

Methods: We contacted all PBS patients 14 years old or older treated and followed at our institution. Age at orchiopexy, type of orchiopexy (with or without ligation of gonadal vessels), testicular volumes and positions were evaluated.

View Article and Find Full Text PDF