Microbial secondary metabolites are natural products that display various therapeutical or agrochemical relevant activities (e [...
View Article and Find Full Text PDFNonribosomal peptides are microbial secondary metabolites exhibiting a tremendous structural diversity and a broad range of biological activities useful in the medical and agro-ecological fields. They are built up by huge multimodular enzymes called nonribosomal peptide synthetases. These synthetases are organized in modules constituted of adenylation, thiolation, and condensation core domains.
View Article and Find Full Text PDFThe Vfm quorum sensing (QS) system is preponderant for the virulence of different species of the bacterial genus Dickeya. The vfm gene cluster encodes 26 genes involved in the production, sensing or transduction of the QS signal. To date, the Vfm QS signal has escaped detection by analytical chemistry methods.
View Article and Find Full Text PDFNatural products represent an important source of potential novel antimicrobial drug leads. Low production by microorganisms in cell culture often delays the structural elucidation or even prevents a timely discovery. Starting from the anti-Gram-negative antibacterial compound albicidin produced by Xanthomonas albilineans, we describe a bioactivity-guided approach combined with non-targeted tandem mass spectrometry and spectral (molecular) networking for the discovery of novel antimicrobial compounds.
View Article and Find Full Text PDFHow pathogens coevolve with and adapt to their hosts are critical to understanding how host jumps and/or acquisition of novel traits can lead to new disease emergences. The Xanthomonas genus includes Gram-negative plant-pathogenic bacteria that collectively infect a broad range of crops and wild plant species. However, individual Xanthomonas strains usually cause disease on only a few plant species and are highly adapted to their hosts, making them pertinent models to study host specificity.
View Article and Find Full Text PDFAlbicidin is a potent antibiotic and phytotoxin produced by Xanthomonas albilineans which targets the plant and bacterial DNA gyrase. We now report on a new albicidin derivative which is carbamoylated at the N-terminal coumaric acid by the action of the ATP-dependent O-carbamoyltransferase Alb15, present in the albicidin (alb) gene cluster. Carbamoyl-albicidin was characterized by tandem mass spectrometry from cultures of a Xanthomonas overproducer strain and the gene function confirmed by gene inactivation of alb15 in X.
View Article and Find Full Text PDFXanthomonas albilineans is the bacterium responsible for leaf scald, a lethal disease of sugarcane. Within the Xanthomonas genus, X. albilineans exhibits distinctive genomic characteristics including the presence of significant genome erosion, a non-ribosomal peptide synthesis (NRPS) locus involved in albicidin biosynthesis, and a type 3 secretion system (T3SS) of the Salmonella pathogenicity island-1 (SPI-1) family.
View Article and Find Full Text PDFThe para-aminobenzoic acid-containing peptide albicidin is a pathogenicity factor synthesized by Xanthomonas albilineans in infections of sugar cane. Albicidin is a nanomolar inhibitor of the bacterial DNA gyrase with a strong activity against various Gram-negative bacteria. The bacterium Pantoea dispersa expresses the hydrolase AlbD, conferring natural resistance against albicidin.
View Article and Find Full Text PDFXanthomonas albilineans causes leaf scald, a lethal disease of sugarcane. Compared to other species of Xanthomonas, X. albilineans exhibits distinctive pathogenic mechanisms, ecology and taxonomy.
View Article and Find Full Text PDFWe report the high-quality draft genome sequence of Xanthomonas sacchari strain LMG 476, isolated from sugarcane. The genome comparison of this strain with a previously sequenced X. sacchari strain isolated from a distinct environmental source should provide further insights into the adaptation of this species to different habitats and its evolution.
View Article and Find Full Text PDFAlbicidin is a potent DNA gyrase inhibitor produced by the sugarcane pathogenic bacterium Xanthomonas albilineans. Here we report the elucidation of the hitherto unknown structure of albicidin, revealing a unique polyaromatic oligopeptide mainly composed of p-aminobenzoic acids. In vitro studies provide further insights into the biosynthetic machinery of albicidin.
View Article and Find Full Text PDFThe peptide antibiotic albicidin, which is synthesized by the plant pathogenic bacterium Xanthomonas albilineans, displays remarkable antibacterial activity against various Gram-positive and Gram-negative microorganisms. The low amounts of albicidin obtainable from the producing organism or through heterologous expression are limiting factors in providing sufficient material for bioactivity profiling and structure-activity studies. Therefore, we developed a convergent total synthesis route toward albicidin.
View Article and Find Full Text PDFBackground: Xanthomonads are plant-associated bacteria responsible for diseases on economically important crops. Xanthomonas fuscans subsp. fuscans (Xff) is one of the causal agents of common bacterial blight of bean.
View Article and Find Full Text PDFBackground: Various bacteria can use non-ribosomal peptide synthesis (NRPS) to produce peptides or other small molecules. Conserved features within the NRPS machinery allow the type, and sometimes even the structure, of the synthesized polypeptide to be predicted. Thus, bacterial genome mining via in silico analyses of NRPS genes offers an attractive opportunity to uncover new bioactive non-ribosomally synthesized peptides.
View Article and Find Full Text PDFBackground: Xanthomonas albilineans causes leaf scald, a lethal disease of sugarcane. X. albilineans exhibits distinctive pathogenic mechanisms, ecology and taxonomy compared to other species of Xanthomonas.
View Article and Find Full Text PDFXanthomonas albilineans is the causal agent of sugarcane leaf scald. Interestingly, this bacterium, which is not known to be insect or animal associated, possesses a type III secretion system (T3SS) belonging to the injectisome family Salmonella pathogenicity island 1 (SPI-1). The T3SS SPI-1 of X.
View Article and Find Full Text PDFABSTRACT Pathogenicity of 75 strains of Xanthomonas albilineans from Guadeloupe was assessed by inoculation of sugarcane cv. B69566, which is susceptible to leaf scald, and 19 of the strains were selected as representative of the variation in pathogenicity observed based on stalk colonization. In vitro production of albicidin varied among these 19 strains, but the restriction fragment length polymorphism pattern of their albicidin biosynthesis genes was identical.
View Article and Find Full Text PDFAlbicidin is a pathotoxin produced by Xanthomonas albilineans, a xylem-invading pathogen that causes leaf scald disease of sugarcane. Albicidin is synthesized by a nonribosomal pathway via modular polyketide synthase and nonribosomal peptide synthetase (NRPS) megasynthases, and NRPS adenylation (A) domains are responsible for the recognition and activation of specific amino acid substrates. DNA fragments (0.
View Article and Find Full Text PDFThe phytotoxin and polyketide antibiotic albicidin produced by Xanthomonas albilineans is a highly potent DNA gyrase inhibitor. Low yields of albicidin production have slowed studies of its chemical structure. Heterologous expression of albicidin biosynthetic genes in X.
View Article and Find Full Text PDFParasitol Today
December 1998
The need for new malaria control strategies has led to increased efforts to understand more clearly the mosquito stages of Plasmodium. The absolute requirement of gamete maturation and fertilization, transformation of sedentary zygote to motile ookinete, ookinete interaction and invasion of gut epithelium, and the survival of the mosquito against immune attack suggest that numerous unidentified targets exist, which could be modified to achieve transmission-blocking of malaria. In the search for new transmission-blocking targets in the mosquito gut, Mohammed Shahabuddin, Stéphane Cociancich and Helge Zieler here summarize recent studies to identify the cellular and biochemical factors that affect the malaria parasite's development; in particular, factors influencing the early development of Plasmodium, receptor-mediated interactions between the parasite and the mosquito midgut, and the gut-associated immune responses directed against Plasmodium.
View Article and Find Full Text PDFXanthomonas albilineans, the causal agent of leaf scald disease of sugarcane, produces a highly potent polyketide-peptide antibiotic and phytotoxin called albicidin. Previous studies established the involvement of a large cluster of genes in the biosynthesis of this toxin. We report here the sub-cloning and sequencing of an additional gene outside of the main cluster and essential for albicidin biosynthesis.
View Article and Find Full Text PDFIn Plasmodium-infected mosquitoes, oocysts are preferentially located at the posterior half of the posterior midgut. Because mosquitoes rest vertically after feeding, the effect of gravity on the ingested blood has been proposed as the cause of such a biased distribution. In this paper, we examined the oocyst distribution on the midguts of mosquitoes that were continuously rotated to nullify the effect of gravity and found that the typical pattern of oocyst distribution did not change.
View Article and Find Full Text PDFInsects belonging to the recent orders of the endopterygote clade (Lepidoptera, Diptera, Hymenoptera and Coleoptera) respond to bacterial challenge by the rapid and transient synthesis of a battery of potent antibacterial peptides which are secreted into their haemolymph. Here we present the first report on inducible antibacterial molecules in the sap-sucking bug Pyrrhocoris apterus, a representative species of the Hemiptera, which predated the Endoptergotes by at least 50 million years in evolution. We have isolated and characterized from immune blood of this species three novel peptides or polypeptides: (i) a 43-residue cysteine-rich anti-(Gram-positive bacteria) peptide which is a new member of the family of insect defensins; (ii) a 20-residue proline-rich peptide carrying an O-glycosylated substitution (N-acetylgalactosamine), active against Gram-negative bacteria; (iii) a 133-residue glycine-rich polypeptide also active against Gram-negative bacteria.
View Article and Find Full Text PDFInsects respond to bacterial challenge by the rapid and transient synthesis of a large number of potent antibacterial peptides that are active against many different bacteria. Two families of inducible antibacterial peptides are well characterized: the cecropins and the insect defensins. A rapidly increasing number of proline- and glycine-rich peptides are reported from various insect species together with cecropins and insect defensins.
View Article and Find Full Text PDF