J Nanosci Nanotechnol
November 2008
The boron nitride nanotubes (BNNTs) synthesis, using CO2-laser vaporization of a BN target under nitrogen gas, is investigated by UV-laser induced fluorescence (LIF) of the vapor phase and UV-Rayleigh scattering (RS) of the gas-suspended nanoparticles. The LIF signal from B atoms is mainly detected in the 1.5 mm-thick region above the BN target.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
October 2007
Continuous laser vaporization of a BN target under N2 atmosphere is up to now the unique route to single-walled boron nitride nanotubes (BN-SWNTs). Although grams of product can be obtained by this technique, the raw material contains in addition to the BN-SWNTs, different by-products made of boron and nitrogen. Since these materials are undesirable for the studying of the intrinsic properties of the nanotubes, we have undertaken a purification process using chemical and physical methods to separate the different components.
View Article and Find Full Text PDFWe present a detailed study of the growth mechanism of single-walled boron nitride nanotubes synthesized by laser vaporization, which is the unique route known to the synthesis of this kind of tube in high quantities. We have performed a nanometric chemical and structural characterization by transmission electron microscopy (high-resolution mode (HRTEM) and electron energy loss spectroscopy) of the synthesis products. Different boron-based compounds and other impurities were identified in the raw synthesis products.
View Article and Find Full Text PDFWe report on the synthesis of C-BN single-walled nanotubes made of BN nanodomains embedded into a graphene layer. The synthesis process consists of vaporizing, by a continuous CO2 laser, a target made of carbon and boron mixed with a Co/Ni catalyst under N2 atmosphere. High-resolution transmission electron microscopy (HRTEM) and nanoelectron energy loss spectroscopy (nanoEELS) provide direct evidence that boron and nitrogen co-segregate with respect to carbon and form nanodomains within the hexagonal lattice of the graphene layer in a sequential manner.
View Article and Find Full Text PDFSpatial investigations of nickel and cobalt atoms and of C2 and C3 radicals are performed by laser induced fluorescence (LIF) in a continuous CO2 laser-vaporization reactor during the synthesis of single-walled carbon nanotubes. The chemical composition of the gas vaporized from bimetallic Ni/Co catalysts-carbon targets is determined using a chemical kinetic model. In this model, the evolution of Ni and Co atoms is driven by kinetics of condensation/evaporation process of pure metal clusters.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
April 2004
A reactor has been developed at ONERA to investigate the gas phase during carbon nanotube formation by laser-induced fluorescence (LIF), Laser-induced incandescence (LII), coherent anti-Stokes Raman Scattering (CARS), and emission spectroscopy. Continuous vaporization is achieved with a continuous wave CO2 laser. Optimized conditions are used for single-walled nanotube growth, that is, a graphite target doped with 2 atom % Ni and 2 atom % Co, helium as buffer gas at a flow rate of 50 ml/s, and a pressure of 300 hPa.
View Article and Find Full Text PDF