Biomech Model Mechanobiol
January 2025
When infants are admitted to the hospital with skull fractures, providers must distinguish between cases of accidental and abusive head trauma. Limited information about the incident is available in such cases, and witness statements are not always reliable. In this study, we introduce a novel, data-driven approach to predict fall parameters that lead to skull fractures in infants in order to aid in determinations of abusive head trauma.
View Article and Find Full Text PDFObjective: Sagittal synostosis is the most common type of craniosynostosis, resulting in deformity with distinctive morphological characteristics. These include occipital narrowing, parietal narrowing, anteriorly shifted vertex with parietal depression, and exaggerated frontal bossing. The traditional cephalic index affords limited reliability in quantifying initial severity and correction.
View Article and Find Full Text PDFImplanted neural microelectrodes are an important tool for recording from and stimulating the cerebral cortex. The performance of chronically implanted devices, however, is often hindered by the development of a reactive tissue response. Previous computational models have investigated brain strain from micromotions of neural electrodes after they have been inserted, to investigate design parameters that might minimize triggers to the reactive tissue response.
View Article and Find Full Text PDFVitreous collagen structure plays an important role in ocular mechanics. However, capturing this structure with existing vitreous imaging methods is hindered by the loss of sample position and orientation, low resolution, or a small field of view. The objective of this study was to evaluate confocal reflectance microscopy as a solution to these limitations.
View Article and Find Full Text PDFBackground: Prior research and experience has increased physician understanding of infant skull fracture prediction. However, patterns related to fracture length, nonlinearity, and features of complexity remain poorly understood, and differences across infant age groups have not been previously explored.
Methods: To determine how infant and low-height fall characteristics influence fracture patterns, we collected data from 231 head CT 3D reconstructions and quantified length and nonlinearity using a custom image processing code.
Vitreoretinal mechanics plays an important role in retinal trauma and many sight-threatening diseases. In age-related pathologies, such as posterior vitreous detachment and vitreomacular traction, lingering vitreoretinal adhesions can lead to macular holes, epiretinal membranes, retinal tears and detachment. In age-related macular degeneration, vitreoretinal traction has been implicated in the acceleration of the disease due to the stimulation of vascular growth factors.
View Article and Find Full Text PDFVitreoretinal adhesive strength is thought to play a mechanical role in various retinal diseases; however, collagen fibril properties and inner limiting membrane (ILM) thickness have not been quantitatively correlated to adhesive strength. In this work, we quantified the relationship between collagen fibril density, angle, length, and ILM thickness with vitreoretinal adhesive strength to advance our understanding of structure-function relationships in vitreoretinal adhesion. Following mechanical peel tests, human retinal sections from the equator and posterior pole of donors 42-89 years of age were extracted and processed for transmission electron microscopy.
View Article and Find Full Text PDFSex, head and neck posture, and cervical muscle preparation are contributing factors in the severity of head and neck injuries. However, it is unknown how these factors modulate the head kinematics. In this study, twenty-four (16 male and 8 female) participants experienced 50 impulsive forces to their heads with and without an acoustic warning.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
August 2021
Traumatic brain injury (TBI) is a significant problem in global health that affects a wide variety of patients. Mild forms of TBI, commonly referred to as concussion, are a result of rapid accelerations of the head from either direct or indirect impacts. Kinetic energy from the impact is transferred into deformation of the brain, leading to cellular disruption.
View Article and Find Full Text PDFSkull fracture is a common finding for both accidental and abusive head trauma in infants and young children, and may provide important clues as to the energy and directionality of the event leading to the skull fracture. However, little is understood regarding the mechanics of skull fracture in the pediatric skull, and how accidental fall parameters contribute to skull fracture patterns. The objectives of this research were to utilize a newly developed linear elastic fracture mechanics finite element model of infant skull fracture to investigate the effect of impact angle and fall height on the predictions of skull fracture patterns in infants.
View Article and Find Full Text PDFComputational models of infant head impact are limited by the paucity of infant cranial bone material property data, particularly with regard to the anisotropic relationships created by the trabecular fibers in infant bone. We previously reported high-rate material property data for human infant cranial bone tested perpendicular to trabeculae fiber orientation. In this study, we measure the anisotropic properties of human infant cranial bone by analyzing bending modulus parallel to the trabeculae fibers.
View Article and Find Full Text PDFTraumatic brain injury (TBI) is a common injury modality affecting a diverse patient population. Axonal injury occurs when the brain experiences excessive deformation as a result of head impact. Previous studies have shown that the arachnoid trabeculae (AT) in the subarachnoid space significantly influence the magnitude and distribution of brain deformation during impact.
View Article and Find Full Text PDFPurpose: In this experimental study, we quantify retinal microvasculature morphological features with depth, region, and age in immature and mature ovine eyes. These data identify morphological vulnerabilities in young eyes to inform the mechanics of retinal hemorrhage in children.
Methods: Retinal specimens from the equator and posterior pole of preterm (n = 4) and adult (n = 9) sheep were imaged using confocal microscopy.
Biomech Model Mechanobiol
October 2020
Infant skull fractures are common in both accidental and abusive head trauma, but identifying the cause of injury may be challenging without adequate evidence. To better understand the mechanics of infant skull fracture and identify environmental variables that lead to certain skull fracture patterns, we developed an innovative computational framework that utilizes linear elastic fracture mechanics theory to predict skull fracture as a first step to study this problem. The finite element method and adaptive-remeshing technique were employed to simulate high-fidelity, geometrically explicit crack propagation in an infant skull following impact.
View Article and Find Full Text PDFFront Bioeng Biotechnol
October 2018
While several studies have qualitatively investigated age- and region-dependent adhesion between the vitreous and retina, no studies have directly measured the vitreoretinal strength of adhesion. In this study, we developed a rotational peel device and associated methodology to measure the maximum and steady-state peel forces between the vitreous and the retina. Vitreoretinal adhesion in the equator and posterior pole were measured in human eyes from donors ranging 30 to 79 years of age, and in sheep eyes from premature, neonatal, young lamb, and young adult sheep.
View Article and Find Full Text PDFSkull fractures are common injuries in young children, typically caused by accidental falls and child abuse. The paucity of detailed biomechanical data from real-world trauma in children has hampered development of biomechanical thresholds for skull fracture in infants. The objectives of this study were to identify biomechanical metrics to predict skull fracture, determine threshold values associated with fracture, and develop skull fracture risk curves for low-height falls in infants.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2018
Purpose: We identify long-term ocular sequelae subsequent to experimental blast exposure.
Methods: Male Long-Evans rats were exposed to 230 kPa side-on primary blast overpressure using a compressed air driven shock tube. Visual system function and structure were assessed for 8 weeks after exposure using optokinetic nystagmus and optical coherence tomography.
Invest Ophthalmol Vis Sci
December 2017
Purpose: Hyaluronic acid-based polymer films are emerging as drug-delivery vehicles for local and continuous drug administration to the eye. The highly lubricating hyaluronic acid increases comfort, but displaces films from the eye, reducing drug exposure and efficacy. Previous studies have shown that careful control of the surface interaction of the film with the eye is critical for improved retention.
View Article and Find Full Text PDFObjectives: Analyses of bone cross-sectional geometry are frequently used by anthropologists and paleontologists to infer the loading histories of past populations. To address some underlying assumptions, we investigated the relative roles of genetics and exercise on bone cross-sectional geometry and bending mechanics in three mouse strains: high bone density (C3H/He), low bone density (C57BL/6), and a high-runner strain homozygous for the Myh4 allele (MM).
Methods And Materials: Weanlings of each strain were divided into exercise (wheel) or control (sedentary) treatment groups for a 7-week experimental period.
Drug-loaded hydrogel devices are emerging as an effective means of localized and sustained drug delivery for the treatment of corneal conditions and injuries. One such device uses a novel, thiolated crosslinked carboxymethylated, hyaluronic acid-based hydrogel (CMHA-S) film to deliver drug to the ocular surface upon placement into the inferior fornix of the eye. While proven to be very safe and effective, the CMHA-S film tends to dislodge in the highly-lubricated ocular environment, thereby reducing drug delivery efficiency and drug efficacy.
View Article and Find Full Text PDFDuring obesity, adipose tissue macrophages (ATMs) adopt a metabolically activated (MMe) phenotype. However, the functions of MMe macrophages are poorly understood. Here, we combine proteomic and functional methods to demonstrate that, in addition to potentiating inflammation, MMe macrophages promote dead adipocyte clearance through lysosomal exocytosis.
View Article and Find Full Text PDFPediatr Radiol
November 2017
Background: The classic metaphyseal lesion (CML) is strongly associated with infant abuse, but the biomechanics responsible for this injury have not been rigorously studied. Radiologic and CT-pathological correlates show that the distal tibial CML always involves the cortex near the subperiosteal bone collar, with variable extension of the fracture into the medullary cavity. Therefore, it is reasonable to assume that the primary site of bone failure is cortical, rather than intramedullary.
View Article and Find Full Text PDFRepetitive back-and-forth head rotation from vigorous shaking is purported to be a central mechanism responsible for diffuse white matter injury, subdural hemorrhage, and retinal hemorrhage in some cases of abusive head trauma (AHT) in young children. Although animal studies have identified mechanisms of traumatic brain injury (TBI) associated with single rapid head acceleration-decelerations at levels experienced in a motor vehicle crash, few experimental studies have investigated TBI from repetitive head rotations. The objective of this study was to systematically investigate the post-injury pathological time-course after cyclic, low-velocity head rotations in the piglet and compare them with single head rotations.
View Article and Find Full Text PDFBiomech Model Mechanobiol
October 2016
Traumatic brain injury (TBI) is a leading cause of death and disability in the USA. To help understand and better predict TBI, researchers have developed complex finite element (FE) models of the head which incorporate many biological structures such as scalp, skull, meninges, brain (with gray/white matter differentiation), and vasculature. However, most models drastically simplify the membranes and substructures between the pia and arachnoid membranes.
View Article and Find Full Text PDFBackground: Low chronic vitamin B-6 status can occur in a subset of women who use oral contraceptives (OCs) with uncertain metabolic consequences. An insufficiency of cellular pyridoxal 5'-phosphate (PLP), which is the coenzyme form of vitamin B-6, may impair many metabolic processes including one-carbon and tryptophan metabolism.
Objective: We investigated the effects of vitamin B-6 supplementation on the in vivo kinetics of one-carbon metabolism and the concentration of one-carbon and tryptophan metabolites in vitamin B-6-deficient OC users.