Background: A previous exploratory study demonstrated the ability of the Lab4 probiotic to alleviate the symptoms of IBS, and post hoc data analysis indicated greatest improvements in the female subgroup. The aim of this study is to confirm the impact of this multistrain probiotic on IBS symptom severity in females.
Methods: An 8-week, single-center, randomized, double-blinded, placebo-controlled, superiority study in 70 females with Rome IV-diagnosed irritable bowel syndrome (IBS) receiving the Lab4 probiotic (25 billion colony-forming units) daily or a matched placebo.
Alterations in physiological processes in pancreas have been associated with various metabolic dysfunctions and can result from environmental exposures, such as chemicals and diet. It was reported that environmental vinyl chloride (VC) exposure, a common industrial organochlorine and environmental pollutant, significantly exacerbated metabolic-related phenotypes in mice fed concurrently with high-fat diet (HFD) but not low-fat diet (LFD). However, little is known about the role of the pancreas in this interplay, especially at a proteomic level.
View Article and Find Full Text PDFThe use of flow cytometry to enumerate microorganisms is gaining traction over the traditional plate count technique on the basis of superior accuracy, precision and time-to-result. Here, we assessed the suitability of live/dead flow cytometry for the enumeration of mixed populations of probiotic bacteria (L. acidophilus, L.
View Article and Find Full Text PDFIn dose-response and structure-activity studies, human hepatic HepG2 cells were exposed for 3 days to nano Cu, nano CuO or CuCl (ions) at doses between 0.1 and 30 ug/ml (approximately the no observable adverse effect level to a high degree of cytotoxicity). Various biochemical parameters were then evaluated to study cytotoxicity, cell growth, hepatic function, and oxidative stress.
View Article and Find Full Text PDFThermoelectric devices possess enormous potential to reshape the global energy landscape by converting waste heat into electricity, yet their commercial implementation has been limited by their high cost to output power ratio. No single "champion" thermoelectric material exists due to a broad range of material-dependent thermal and electrical property optimization challenges. While the advent of nanostructuring provided a general design paradigm for reducing material thermal conductivities, there exists no analogous strategy for homogeneous, precise doping of materials.
View Article and Find Full Text PDFIn dose-response and structure-activity studies, human hepatic HepG2 cells were exposed to between 0.01 and 300 ug/ml of different silver nanomaterials and AgNO₃ for 3 days. Treatment chemicals included a custom synthesized rod shaped nano Ag, a glutathione capped nano Ag, polyvinylpyrrolidone (PVP) capped nano Ag (75 nm) from Nanocomposix and AgNO₃.
View Article and Find Full Text PDFCurrent European surveillance regulations for scrapie, a naturally occurring transmissible spongiform encephalopathy (TSE) or prion disease in sheep and goats, require testing of fallen stock or healthy slaughter animals, and outline measures in the case of confirmation of disease. An outbreak of classical scrapie in a herd with 2500 goats led to the culling of the whole herd, providing the opportunity to examine a subset of goats, take samples, and examine them for the presence of disease-associated prion protein (PrP) to provide further information on scrapie test sensitivity, pathology, and association with prion protein genotype. Goats were examined clinically prior to cull, and the brains examined post mortem by Bio-Rad ELISA, a rapid screening test used for active surveillance in sheep and goats, and two confirmatory tests, Western blot and immunohistochemistry.
View Article and Find Full Text PDFThe potential mammalian hepatotoxicity of nanomaterials was explored in dose-response and structure-activity studies in human hepatic HepG2 cells exposed to between 10 and 1000 μg/ml of five different CeO, three SiO, and one TiO-based particles for 3 days. Various biochemical parameters were then evaluated to study cytotoxicity, cell growth, hepatic function, and oxidative stress. Few indications of cytotoxicity were observed between 10 and 30 μg/ml.
View Article and Find Full Text PDFErythromycin, avermectin and rapamycin are clinically useful polyketide natural products produced on modular polyketide synthase multienzymes by an assembly-line process in which each module of enzymes in turn specifies attachment of a particular chemical unit. Although polyketide synthase encoding genes have been successfully engineered to produce novel analogues, the process can be relatively slow, inefficient, and frequently low-yielding. We now describe a method for rapidly recombining polyketide synthase gene clusters to replace, add or remove modules that, with high frequency, generates diverse and highly productive assembly lines.
View Article and Find Full Text PDFThermoelectric power generation can play a key role in a sustainable energy future by converting waste heat from power plants and other industrial processes into usable electrical power. Current thermoelectric devices, however, require energy intensive manufacturing processes such as alloying and spark plasma sintering. Here, we describe the fabrication of a p-type thermoelectric material, copper selenide (CuSe), utilizing solution-processing and thermal annealing to produce a thin film that achieves a figure of merit, ZT, which is as high as its traditionally processed counterpart, a value of 0.
View Article and Find Full Text PDFAn emerging class of materials that are hybrid in nature is propelling a technological revolution in energy, touching many fundamental aspects of energy-generation, storage, and conservation. Hybrid materials combine classical inorganic and organic components to yield materials that manifest new functionalities unattainable in traditional composites or other related multicomponent materials, which have additive function only. This Research News article highlights the exciting materials design innovations that hybrid materials enable, with an eye toward energy-relevant applications involving charge, heat, and mass transport.
View Article and Find Full Text PDFInhibition of host-encoded targets, such as the cyclophilins, provides an opportunity to generate potent high barrier to resistance antivirals for the treatment of a broad range of viral diseases. However, many host-targeted agents are natural products, which can be difficult to optimize using synthetic chemistry alone. We describe the orthogonal combination of bioengineering and semisynthetic chemistry to optimize the drug-like properties of sanglifehrin A, a known cyclophilin inhibitor of mixed nonribosomal peptide/polyketide origin, to generate the drug candidate NVP018 (formerly BC556).
View Article and Find Full Text PDFBackground: Diabetes-related lower limb amputations are associated with considerable morbidity and mortality and are usually preceded by foot ulceration. The available systematic reviews of aggregate data are compromised because the primary studies report both adjusted and unadjusted estimates. As adjusted meta-analyses of aggregate data can be challenging, the best way to standardise the analytical approach is to conduct a meta-analysis based on individual patient data (IPD).
View Article and Find Full Text PDFThe thermoelectric properties of a unique hybrid polymer-inorganic nanoparticle system consisting of tellurium nanowires and a conducting polymer, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), can be optimized by both controlling the shape of the nanoparticles and the loading and doping of the polymeric matrix with polar solvents. The mechanism for an observed improvement in power factor is attributed to the unique conducting nature of PEDOT:PSS, which exhibits a transition from a hopping transport-dominated regime to a carrier scattering-dominated regime upon doping with polar solvents. Near this transition, the electrical conductivity can be improved without significantly reducing the thermopower.
View Article and Find Full Text PDFThe electrical behavior of a conducting-polymer/inorganic-nanowire composite is explained with a model in which carrier transport occurs predominantly through a highly conductive volume of polymer that exists at the polymer-nanowire interface. This result highlights the importance of controlling nanoscale interfaces for thermoelectric materials, and provides a general route for improving carrier transport in organic/inorganic composites.
View Article and Find Full Text PDFThe rapK gene required for biosynthesis of the DHCHC starter acid that initiates rapamycin biosynthesis was deleted from strain BIOT-3410, a derivative of Streptomyces rapamycinicus which had been subjected to classical strain and process development and capable of robust rapamycin production at titres up to 250mg/L. The resulting strain BIOT-4010 could no longer produce rapamycin, but when supplied exogenously with DHCHC produced rapamycin at titres equivalent to its parent strain. This strain enabled mutasynthetic access to new rapalogs that could not readily be isolated from lower titre strains when fed DHCHC analogs.
View Article and Find Full Text PDFThe macrocyclic polyketides FK506, FK520, and rapamycin are potent immunosuppressants that prevent T-cell proliferation through initial binding to the immunophilin FKBP12. Analogs of these molecules are of considerable interest as therapeutics in both metastatic and inflammatory disease. For these polyketides the starter unit for chain assembly is (4R,5R)-4,5-dihydroxycyclohex-1-enecarboxylic acid derived from the shikimate pathway.
View Article and Find Full Text PDFCyclophilin inhibitors currently in clinical trials for hepatitis C virus (HCV) are all analogues of cyclosporine (CsA). Sanglifehrins are a group of naturally occurring cyclophilin binding polyketides that are structurally distinct from the cyclosporines and are produced by a microorganism amenable to biosynthetic engineering for lead optimization and large-scale production by fermentation. Preclinical characterization of the potential utility of this class of compounds for the treatment of HCV revealed that the natural sanglifehrins A to D are all more potent than CsA at disrupting formation of the NS5A-CypA, -CypB, and -CypD complexes and at inhibition of CypA, CypB, and CypD isomerase activity.
View Article and Find Full Text PDFA novel, reproducible, and simple solution-based process for the fabrication of CuInS(2) absorber layers and CdS buffer layers for photovoltaics is presented. In this process, a precursor solution is deposited on a substrate, after which sintered NCs are formed in situ at temperatures as low as 250 degrees C. Solar cell efficiencies of up to 4% have been demonstrated using this novel fabrication method.
View Article and Find Full Text PDFConducting and semiconducting polymers are important materials in the development of printed, flexible, large-area electronics such as flat-panel displays and photovoltaic cells. There has been rapid progress in developing conjugated polymers with high transport mobility required for high-performance field-effect transistors (FETs), beginning with mobilities around 10(-4) cm(2) V(-1) s(-1) to a recent report of 1 cm(2) V(-1) s(-1) for poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT). Here, the electrical properties of PBTTT are studied at high charge densities both as the semiconductor layer in FETs and in electrochemically doped films to determine the transport mechanism.
View Article and Find Full Text PDFA biosynthetic medicinal chemistry approach was applied to the optimization of the natural product Hsp90 inhibitor macbecin. By genetic engineering, mutants have been created to produce novel macbecin analogues including a nonquinone compound (5) that has significantly improved binding affinity to Hsp90 (Kd 3 nM vs 240 nM for macbecin) and reduced toxicity (MTD > or = 250 mg/kg). Structural flexibility may contribute to the preorganization of 5 to exist in solution in the Hsp90-bound conformation.
View Article and Find Full Text PDFBy comparing the changes in pi-pi* absorption with the transconductance in PEO-LiClO4 electrolyte-gated FETs, we have demonstrated that the high channel currents obtained at low gate voltages result from reversible electrochemical doping of the semiconducting polymer film. At low temperatures, the conductivity of the electrochemically doped poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene), PBTTT-C14, is nonlinear with a crossover from dsigma(T)/dT > 0 to dsigma(T)/dT approximately 0 as a function of the source-drain voltage. High current densities, up to 10(6) A/cm2 at 4.
View Article and Find Full Text PDF