We have compared induction responses of human hepatocytes to known inducers of CYP1A2, CYP2B6, CYP2C and CYP3A4/5 to determine whether the culture format, treatment regimen and/or substrate incubation conditions affected the outcome. CYP induction responses to prototypical inducers were equivalent regardless of pre-culture time (24h or 48h), plate format (60mm or 24-well plates) used or whether CYP activities were measured in microsomes or whole cell monolayers. Fold-induction of CYP3A4/5 by 1000muM PB and 10microM RIF were equivalent.
View Article and Find Full Text PDFCryopreserved human hepatocytes have been used to predict hepatic in-vivo clearance. Physiologically-based direct scaling methods generally underestimate human in-vivo hepatic clearance. Cryopreserved human hepatocytes were incubated in 100% serum and in serum-free medium to predict the in-vivo hepatic clearance of six compounds (phenazone (antipyrine), bosentan, mibefradil, midazolam, naloxone and oxazepam).
View Article and Find Full Text PDFHepatocyte assays, routinely used to assess the metabolic stability of new chemical entities, were recently improved by using hepatocytes in suspension instead of primary cultures [N. Blanchard, L. Richert, B.
View Article and Find Full Text PDFGeneric physiologically-based models of pharmacokinetics were evaluated for early drug discovery. Plasma profiles after intravenous and oral dosing were simulated in rat for 68 compounds from six chemical classes. Input data consisted of structure based predictions of lipophilicity, ionization, and protein binding plus intrinsic clearance measured in rat hepatocytes, single measured values of aqueous solubility, and artificial membrane permeability.
View Article and Find Full Text PDFSynthesis and evaluation of the activity of new 4-methyl-1,2,3,4,10,10a-hexahydropyrazino[1,2-a]indoles as 5-HT(2C) receptor agonists are described. Appropriately substituted, several analogs displayed selectivity against the other 5-HT(2) receptor subtypes of 1 order of magnitude or more. Selectivity was improved for several compounds versus the lead 1, increasing the therapeutic interest in this series of 5-HT(2C) receptor agonists.
View Article and Find Full Text PDFVarious incubation conditions of human hepatocytes were compared for their accuracy in predicting the in vivo hepatic clearance (CL(H)) of model compounds. The test compounds were the highly cleared, low protein bound naloxone (in vivo CL(H) = 25 ml min(-1) kg(-1); free fraction = 0.6), the medium clearance, highly protein bound midazolam (CL(H) = 12 ml min(-1) kg(-1); free fraction = 0.
View Article and Find Full Text PDFThe objective of the present study was to compare two configurations of the hepatocyte model namely suspensions (SH) and conventional primary cultures (CPC) for their ability to predict the hepatic clearance in vivo in the rat and, to investigate the impact of serum on the prediction accuracy. The metabolic competences of several cytochrome P450 isoenzymes were investigated both in CPC and SH in the presence or absence of serum. Under the same conditions, the in vitro intrinsic clearance of six test compounds metabolised by a variety of phase I and phase II enzymes (antipyrine, RO-X, mibefradil, midazolam, naloxone and oxazepam) were derived from Vmax/Km scaled up to the corresponding in vivo hepatic metabolic clearance.
View Article and Find Full Text PDFStrategies used to screen new drug entities as potential inhibitors of CYP450 enzymes are now widely used to select candidates in the drug discovery process. However, the information obtained based on IC50 values are usually more of qualitative nature. The aim of this study was to find out whether a more quantitative assessment of interaction potential could be achieved on the basis of the ratio I/Ki (I corresponds to inhibitor concentration).
View Article and Find Full Text PDFIsolated human hepatocytes have been shown to represent a valuable in vitro model to investigate the metabolism and cytotoxicity of xenobiotics. In addition, human hepatocyte transplantation and artificial liver support systems using isolated human hepatocytes are currently investigated as treatment for acute and chronic hepatic failure. In this regard, human hepatocyte banking by cryopreservation would be of great interest.
View Article and Find Full Text PDFErnst Schering Res Found Workshop
October 2002
We evaluated the antioxidant status, namely cellular lipid peroxidation, by measuring thiobarbituric acid reactive substances (TBARS), cellular reduced glutathione (GSH) content, glutathione reductase (GSSG-R), glutathione transferase (GST), glutathione peroxidase (GSH-Px) and catalase activities in rat liver, hepatocytes immediately after isolation and in two-dimensional (2D) culture (on non-coated or collagen-coated dishes, as collagen-collagen or collagen-Matrigel sandwich cultures) or three-dimensional (3D) culture on Matrigel-coated dishes. Microsomal cytochrome P450 (CYP)- and UDP-glucuronosyl transferase (UGT)- dependent activities were also assessed in rat livers and hepatocyte cultures. The overall antioxidant status of rat hepatocytes immediately after isolation was not significantly different from that of rat livers.
View Article and Find Full Text PDFEur J Drug Metab Pharmacokinet
February 2002
The stability of four major cytochrome P450 isoenzymes (CYPIA, CYP2B, CYP2E1 and CYP3A) and of two phase II conjugation enzymes (glucuronyl- and sulfotransferases) was investigated in primary cultures of rat, dog and human hepatocytes in the same conditions. 7-ethoxyresorufin deethylation (EROD), 7-methoxycoumarin demethylation (MCOD), chlorzoxazone (CLOX) 6-hydroxylation, 1'- and 4-hydroxylation of midazolam (MDZ), and p-nitrophenol glucuronidation and sulfation, were used respectively. The EROD activity was stable over 72 hours in rat and dog and only 48 hours in human hepatocytes.
View Article and Find Full Text PDFClin Pharmacokinet
December 2001
Objective: To perform a comparative quantitative evaluation of the prediction accuracy for human hepatic metabolic clearance of 5 different mathematical models: allometric scaling (multiple species and rat only), physiologically based direct scaling, empirical in vitro-in vivo correlation, and supervised artificial neural networks.
Methods: The mathematical prediction models were implemented with a publicly available dataset of 22 extensively metabolised compounds and compared for their prediction accuracy using 3 quality indicators: prediction error sum of squares (PRESS), r2 and the fold-error.
Results: Approaches such as physiologically based direct scaling, empirical in vitro-in vivo correlation and artificial neural networks, which are based on in vitro data only, yielded an average fold-error ranging from 1.
Non-peptidomimetic renin inhibitors of the piperidine type represent a novel structural class of compounds potentially free of the drawbacks seen with peptidomimetic compounds so far. Synthetic optimization in two structural series focusing on improvement of potency, as well as on physicochemical properties and metabolic stability, has led to the identification of two candidate compounds 14 and 23. Both display potent and long-lasting blood pressure lowering effects in conscious sodium-depleted marmoset monkeys and double transgenic rats harboring both the human angiotensinogen and the human renin genes.
View Article and Find Full Text PDFWe assessed the hepatic antioxidant status of spontaneously (SHR) and desoxicorticosterone acetate (DOCA)-induced hypertensive rats and that of respective normotensive Wistar Kyoto (WKY) and Sprague-Dawley (SPRD) rats. For this we evaluated, ex vivo in liver cytosols, reduced glutathione (GSH) content, glutathione-related enzyme (peroxidase, reductase and transferase) activities as well as the rate of lipid peroxidation in 9-11 week-old rats. The antioxidant status and the cytotoxicity of acetaminophen, a radical- and hydrogen peroxide-mediated hepatotoxic compound, were also assessed in vitro in cultured hepatocytes isolated from hypertensive (SHR, DOCA) and normotensive control (WKY, SPRD) rats.
View Article and Find Full Text PDFSeveral statistical regression models and artificial neural networks were used to predict the hepatic drug clearance in humans from in vitro (hepatocyte) and in vivo pharmacokinetic data and to identify the most predictive models for this purpose. Cross-validation was performed to assess prediction accuracy. It turned out that human hepatocyte data was the best predictor, followed by rat hepatocyte data.
View Article and Find Full Text PDFThe flavin-containing monooxygenase (FMO)-dependent N-oxidation of benzydamine has been assessed as a method for monitoring the activity of FMOs in monolayer cultures of hepatocytes from rat, dog, rabbit, hamster and human. The advantage of this substrate is that benzydamine N-oxide formation can be measured directly in extracts of cellular incubations without an intensive work-up procedure. Benzydamine and its N-oxide are readily separated by HPLC with fluorometric detection.
View Article and Find Full Text PDFJ Pharmacol Exp Ther
August 1999
Tezosentan (Ro 61-0612) [5-isopropyl-pyridine-2-sulfonic acid 6-(2-hydroxy-ethoxy)-5-(2-methoxy-phenoxy)-2-(2-1H-tetrazol-5-yl-+ ++pyri din-4-yl)-pyrimidin-4-ylamide] is a new endothelin (ET) receptor antagonist specifically designed for parenteral use. Tezosentan competitively antagonizes the specific binding of (125)I-labeled ET-1 and of the selective ET(B) receptor ligands (125)I-labeled ET-3 and (125)I-labeled sarafotoxin S6c on cells and tissues carrying ET(A) and ET(B) receptors, with inhibitory constants in the nanomolar range, and has high water solubility. Tezosentan exhibits high functional inhibitory potency for inhibiting contraction induced by ET-1 on isolated rat aorta (ET(A) receptors; pA(2) = 9.
View Article and Find Full Text PDFThis article reviews the methods available for predicting hepatic metabolic clearance in humans, and discusses their application to the processes of drug discovery and development. The application of these techniques has increased markedly during the past few years because of the improved availability of human liver samples, which has increased the opportunities to use in vitro studies to predict human clearance. The techniques available involve both empirical and physiologically based approaches.
View Article and Find Full Text PDFEndothelin (ET) receptor antagonists are of great potential clinical interest for the treatment pathological conditions associated with vasospasm, such as subarachnoid hemorrhage (SAH). We developed for parenteral use a compound of a class of trifunctionalized heteroarylsulfonamide pyrimidines specially designed for high water solubility. Ro 61-1790 [5-methyl-pyridine-2-sulfonic acid 6-(2-hydroxy-ethoxy)-5-(2-methoxy-phenoxy)-2-(2-1H-tetrazol-5-yl-+ ++pyri din-4-yl)-pyrimidin-4-ylamide] is a competitive ET antagonist with an affinity to ETA receptor in the subnanomolar range.
View Article and Find Full Text PDFIn this study, we investigated rational and reliable methods of using animal data to predict in humans the clearance of drugs which are mainly eliminated through hepatic metabolism. For 10 extensively metabolized compounds, adjusting the in vivo clearance in the different animal species for the relative rates of metabolism in vitro dramatically improved the predictions of human clearance compared to the approach in which clearance is directly extrapolated using body weight. Using hepatocyte data to normalize the in vivo clearances led to lower median deviations between the observed and predicted clearances in man compared to the approach normalizing data with brain weight (30-40% vs 60-80%, respectively).
View Article and Find Full Text PDFPurpose: The present investigation retrospectively evaluates the use of human hepatocytes to classify compounds into low, intermediate or high hepatic extraction ratio in man.
Methods: A simple approach was used to correlate the in vivo hepatic extraction ratio of a number of compounds in man (literature and in-house data) with the corresponding in vitro clearance which was determined in human hepatocytes. The present approach assumes that, for compounds eliminated mainly through liver metabolism, intrinsic clearance is the major determinant for their in vivo hepatic extraction ratio and subsequently their bioavailability in man.
1. In the present study, in vivo pharmacokinetic data in animals were combined with in vitro metabolic data from animal and human hepatocytes to predict the human systemic plasma clearance and the kinetic profile of tolcapone, a compound metabolized by phase II reactions. 2.
View Article and Find Full Text PDFRelating pharmacokinetic information obtained in animal species to man (interspecies scaling) can play an important role in enabling understanding of the differences and similarities between species, and helping to predict the kinetic profile of a new compound in man. Interspecies scaling techniques have been applied to lamifiban (Ro 44-9883), a new selective and potent nonpeptidic inhibitor of human glycoprotein IIb-IIIa intended for use in clinical treatment of, for example, acute coronary syndrome. The pharmacokinetic profile of lamifiban in man was predicted from animal data (in rats, dogs and cynomolgus monkeys) by using allometric scaling and concentration-time transformations.
View Article and Find Full Text PDF1. An hplc method with fluorescence derivatization was developed for the quantification of remikiren in plasma (limit of quantification 2 ng/ml). This was used to determine the pharmacokinetics in various species of primate, in which the compound is a potent inhibitor of renin, as well as in the rat and dog in which it is less active.
View Article and Find Full Text PDF