Publications by authors named "Coadwell J"

Pleckstrin homology (PH) domains are modules characterised by a conserved three-dimensional protein fold. Several PH domains bind phosphoinositides with high affinity and specificity whilst most others do not. ARAP3 is a dual GTPase activating protein for Arf6 and RhoA which was identified in a screen for phosphatidylinositol-(3,4,5)-trisphophate (PtdIns(3,4,5)P(3)) binding proteins.

View Article and Find Full Text PDF

Recently, we identified that diverse heavy chain (H-chain)-only IgG is spontaneously produced in light chain (L-chain)-deficient mice (L(-/-) with silenced kappa and lambda loci) despite a block in B cell development. In murine H-chain IgG, the first Cgamma exon, C(H)1, is removed after DNA rearrangement and secreted polypeptides are comparable with camelid-type H-chain IgG. Here we show that L(-/-) mice generate a novel class of H-chain Ig with covalently linked alpha chains, not identified in any other healthy mammal.

View Article and Find Full Text PDF

Phospholipase D (PLD) catalyses the hydrolysis of phosphatidylcholine to generate phosphatidic acid and choline. Historically, much PLD work has been conducted in mammalian settings although genes encoding enzymes of this family have been identified in all eukaryotic organisms. Recently, important insights on PLD function are emerging from work in yeast, but much less is known about PLD in other organisms.

View Article and Find Full Text PDF

Endoplasmic reticulum (ER)-associated degradation (ERAD) is a cell-autonomous process that eliminates large quantities of misfolded, newly synthesized protein, and is thus essential for the survival of any basic eukaryotic cell. Accordingly, the proteins involved and their interaction partners are well conserved from yeast to mammals, and Saccharomyces cerevisiae is widely used as a model system with which to investigate this fundamental cellular process. For example, valosin-containing protein (VCP) and its yeast homologue cell division cycle protein 48 (Cdc48p), which help to direct polyubiquitinated proteins for proteasome-mediated degradation, interact with an equivalent group of ubiquitin ligases in mouse and in S.

View Article and Find Full Text PDF

The equatorial subsegment (EqSS) was originally identified by atomic force microscopy as a discrete region within the equatorial segment of Artiodactyl spermatozoa. In this investigation, we show that the EqSS is enriched in tyrosine phosphorylated proteins and present preliminary evidence for its presence in mouse and rat spermatozoa. The anti-phosphotyrosine monoclonal antibody (McAb) 4G10 bound strongly and discretely to the EqSS of permeabilized boar, ram, and bull spermatozoa.

View Article and Find Full Text PDF

We have identified eleven novel aminergic-like G-protein coupled receptor (GPCRs) sequences (named AmphiAmR1-11) by searching the genomic trace sequence database for the amphioxus species, Branchiostoma floridae. They share many of the structural motifs that have been used to characterize vertebrate and invertebrate aminergic GPCRs. A preliminary classification of these receptors has been carried out using both BLAST and Hidden Markov Model analyses.

View Article and Find Full Text PDF
Article Synopsis
  • Class I phosphatidylinositol-3-OH kinases (PI(3)Ks) play a crucial role in regulating the lipid messenger PtdIns(3,4,5)P(3), which affects vital cell responses.
  • Different regulatory mechanisms, including adaptor subunits and catalytic subunits, influence the activity of these kinases, but their specific importance in living organisms is not fully understood.
  • The study revealed that components like Gbetagammas, p101, and Ras are key in controlling PI(3)Kgamma in mouse neutrophils, affecting processes such as PtdIns(3,4,5)P(3) accumulation, protein kinase B activation, and migration towards certain ligands.
View Article and Find Full Text PDF

A variety of genetic and inhibitor studies have shown that phosphoinositide 3-kinase gamma (PI3Kgamma) plays an essential role in a number of physiological responses, including neutrophil chemotaxis, mast cell degranulation, and cardiac function []. PI3Kgamma is currently thought to be composed of a p110gamma catalytic subunit and a single regulatory subunit, p101. The binding of p110gamma to p101 dramatically increases the activation of the complex by Gbetagamma subunits and, hence, is thought to be critical for the coupling of PI3Kgamma to G protein coupled receptors [].

View Article and Find Full Text PDF

Several families of endogenous retroviruses (ERVs) are expressed in mammalian placental tissues, and are implicated in aspects of placental development and function. We characterized the structure of abundant ERV-related transcripts in mouse placenta. In addition to the 7 kb full-length type I and 5 kb type I deleted intracisternal A-particle (IAP) transcripts, we identified and cloned an abundant 2 kb transcript encoding a novel member of the pregnancy-specific glycoprotein (Psg) gene family, which contains an IAP long terminal repeat (LTR) in the 3' untranslated region (UTR).

View Article and Find Full Text PDF

The amino terminus of phospholipase D1 (PLD1) contains three potential membrane-interacting determinants: a phox homology (PX) domain, a pleckstrin homology (PH) domain and two adjacent cysteines at positions 240 and 241 within the PH domain that are fatty acylated in vivo. To understand how these determinants contribute to membrane localization, we have mutagenized critical residues of the PLD1 PH domain in the wild type or palmitate-free background in the intact protein, in a fragment that deletes the first 210 amino acids including the PX domain, and in the isolated PH domain. Mutants were expressed in COS-7 cells and examined for membrane residence, intracellular localization, palmitoylation, and catalytic activity.

View Article and Find Full Text PDF

We show that matrices carrying the tethered homologs of natural phosphoinositides can be used to capture and display multiple phosphoinositide binding proteins in cell and tissue extracts. We present the mass spectrometric identification of over 20 proteins isolated by this method, mostly from leukocyte extracts: they include known and novel proteins with established phosphoinositide binding domains and also known proteins with surprising and unusual phosphoinositide binding properties. One of the novel PtdIns(3,4,5)P3 binding proteins, ARAP3, has an unusual domain structure, including five predicted PH domains.

View Article and Find Full Text PDF

FENS-1 and DFCP1 are recently discovered proteins containing one or two FYVE-domains respectively. We show that the FYVE domains in these proteins can bind PtdIns3P in vitro with high specificity over other phosphoinositides. Exogenously expressed FENS-1 localises to early endosomes: this localisation requires an intact FYVE domain and is sensitive to wortmannin inhibition.

View Article and Find Full Text PDF

The transcription factor nuclear factor kappa B (NF-kappa B) plays a pivotal role in inflammatory processes through induction of adhesion molecules and chemokines. The zinc finger molecule A20 is an important negative regulator of NF-kappa B. The mechanism utilized by A20 is not fully understood, but A20 has been shown to bind to tumour-necrosis-factor-receptor-associated factor (TRAF) molecules, which are necessary for pro-inflammatory cytokine signalling.

View Article and Find Full Text PDF

The production of reactive oxygen species (ROS) by neutrophils has a vital role in defence against a range of infectious agents, and is driven by the assembly of a multi-protein complex containing a minimal core of five proteins: the two membrane-bound subunits of cytochrome b(558) (gp91(phox) and p22(phox)) and three soluble factors (GTP-Rac, p47(phox) and p67(phox) (refs 1, 2). This minimal complex can reconstitute ROS formation in vitro in the presence of non-physiological amphiphiles such as SDS. p40(phox) has subsequently been discovered as a binding partner for p67(phox) (ref.

View Article and Find Full Text PDF

Integrin alphaEbeta7 is expressed almost exclusively by mucosal T cells and mucosal dendritic antigen-presenting cells (APCs) and is thought to be induced locally by transforming growth factor-beta (TGF-beta). In mice, mRNA for the alphaE subunit was found to be abundant in mucosal T cells but absent from other tissues. Exposure of a T-cell line to TGF-beta strongly up-regulated alphaE mRNA levels within 30 min, and nuclear run-on experiments established that regulation occurred at the level of transcription.

View Article and Find Full Text PDF

Phosphatidylinositol 3-kinases are a family of dual specificity lipid/protein kinases. The products of PI3K's, phosphatidylinositol(3,4,5) triphosphate and phosphatidylinositol(3,4) bisphosphate, act as second messengers connecting activated transmembrane receptors to signaling pathways that control gene transcription, proliferation, transformation, programmed cell death, adhesion, migration and vesicular transport. There is evidence that different isoforms of PI3K's activate specific signaling pathways and are thus responsible for integrating cellular responses.

View Article and Find Full Text PDF

Background: Phosphoinositide (PI) 3-kinase and its second messenger products, phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)) and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P(2)), play important roles in signalling processes crucial for cell movement, differentiation and survival. Previously, we isolated a 32kDa PtdIns(3,4,5)P(3)-binding protein from porcine leukocytes. This protein contains an amino-terminal Src homology 2 (SH2) domain and a carboxy-terminal pleckstrin homology (PH) domain, and is identical to the recently described DAPP1 (also known as PHISH or Bam32) protein.

View Article and Find Full Text PDF

We have reported previously that phospholipase D1 (PLD1) is labeled specifically with [(3)H]palmitate following transient expression and immunoprecipitation and that this modification appeared important both for membrane localization and catalytic activity. In this work we identify by mutagenesis that the acylation sites on PLD1 are cysteine residues 240 and 241, with the cysteine at position 241 accounting for most but not all of the modification. Replacement of both cysteine residues with either serines or alanines resulted in a mutant protein that contained undetectable [(3)H]palmitate.

View Article and Find Full Text PDF

Newly synthesized mammalian spermatozoa undergo critical modifications as they pass along the epididymis. The modifications endow spermatozoa with fertilizing ability and occur largely as a consequence of epididymal gene expression. With this in mind, we here employed a cDNA cloning strategy designed to identify key epididymal gene products.

View Article and Find Full Text PDF

Proacrosin, the zymogen form of the serine protease beta-acrosin, is thought to function as a secondary binding molecule between mammalian gametes during fertilization (Jansen et al., 1995: Int J Dev Biol 39, 501-510). The interaction involves strong ionic bonds between positively charged amino acids on proacrosin and negatively charged polysulphate groups on zona pellucida glycoproteins.

View Article and Find Full Text PDF

Background: Protein kinase B (PKB) is involved in the regulation of apoptosis, protein synthesis and glycogen metabolism in mammalian cells. Phosphoinositide-dependent protein kinase (PDK-1) activates PKB in a manner dependent on phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3), which is also needed for the translocation of PKB to the plasma membrane. It has been proposed that the amount of PKB activated is determined exclusively as a result of its translocation, and that a constitutively active pool of membrane-associated PDK-1 simply phosphorylates all the PKB made available.

View Article and Find Full Text PDF

Protein kinase B (PKB) is activated in response to phosphoinositide 3-kinases and their lipid products phosphatidylinositol 3,4, 5-trisphosphate [PtdIns(3,4,5)P3] and PtdIns(3,4)P2 in the signaling pathways used by a wide variety of growth factors, antigens, and inflammatory stimuli. PKB is a direct target of these lipids, but this regulation is complex. The lipids can bind to the pleckstrin homologous domain of PKB, causing its translocation to the membrane, and also enable upstream, Thr308-directed kinases to phosphorylate and activate PKB.

View Article and Find Full Text PDF

Actin-capping proteins are ubiquitous components of mammalian cells. They are known to regulate the polymerization state of actin and hence indirectly control the activity of the cytoskeleton and cell shape. As part of our investigation into the molecular mechanisms that direct differentiation of a round spermatid into an elongating spermatozoa, we report on a testis-specific 1.

View Article and Find Full Text PDF

Two highly similar, PtdIns(4,5)P2-selective, G beta gamma-activated PI3Ks were purified from pig neutrophil cytosol. Both were heterodimers, were composed of a 101 kDa protein and either a 120 kDa or a 117 kDa catalytic subunit, and were activated greater than 100-fold by G beta gammas. Peptide sequence-based oligonucleotide probes were used to clone cDNAs for the p120 and p101 species.

View Article and Find Full Text PDF