Publications by authors named "Clyde Bango"

Article Synopsis
  • The androgen receptor (AR) is a major driver of prostate cancer, and despite new therapies, patients with metastatic disease often have poor outcomes, highlighting the need for deeper understanding of AR-related processes in cancer cells.
  • This study uses mass spectrometry to show that increased fatty acyl chain length in phospholipids is a key change in lipid metabolism influenced by AR, particularly focusing on the enzyme ELOVL5 that elongates fatty acids.
  • Results indicate that ELOVL5 is crucial for prostate cancer cell proliferation and metastasis, with its depletion causing harmful mitochondrial effects, while supplementation with a fatty acid product of ELOVL5 counteracts these effects, suggesting targeted therapies could focus on lipid elongation pathways.
View Article and Find Full Text PDF

Purpose: Identifying cancers with high PI3K pathway activity is critical for treatment selection and eligibility into clinical trials of PI3K inhibitors. Assessments of tumor signaling pathway activity need to consider intratumoral heterogeneity and multiple regulatory nodes.

Experimental Design: We established a novel, mechanistically informed approach to assessing tumor signaling pathways by quantifying single-cell-level multiplex immunofluorescence using custom algorithms.

View Article and Find Full Text PDF

Ductal carcinoma in situ (DCIS) of the breast precedes the development of invasive breast cancer and reflects the genomic changes and protein expression profile of invasive disease. AKT1 cancer cells (QCC) are a rare, drug-tolerant, epigenetically plastic, and quiescent cancer cell subset that we previously identified at a frequency of 0.5-1% in primary breast tumors using the marker profile: AKT/H3K9me2/HES1.

View Article and Find Full Text PDF

A hallmark of prostate cancer progression is dysregulation of lipid metabolism via overexpression of fatty acid synthase (FASN), a key enzyme in de novo fatty acid synthesis. Metastatic castration-resistant prostate cancer (mCRPC) develops resistance to inhibitors of androgen receptor (AR) signaling through a variety of mechanisms, including the emergence of the constitutively active AR variant V7 (AR-V7). Here, we developed an FASN inhibitor (IPI-9119) and demonstrated that selective FASN inhibition antagonizes CRPC growth through metabolic reprogramming and results in reduced protein expression and transcriptional activity of both full-length AR (AR-FL) and AR-V7.

View Article and Find Full Text PDF

CTLA-4 immune checkpoint blockade is clinically effective in a subset of patients with metastatic melanoma. We identify a subcluster of MAGE-A cancer-germline antigens, located within a narrow 75 kb region of chromosome Xq28, that predicts resistance uniquely to blockade of CTLA-4, but not PD-1. We validate this gene expression signature in an independent anti-CTLA-4-treated cohort and show its specificity to the CTLA-4 pathway with two independent anti-PD-1-treated cohorts.

View Article and Find Full Text PDF

While progression from normal prostatic epithelium to invasive cancer is driven by molecular alterations, tumor cells and cells in the cancer microenvironment are co-dependent and co-evolve. Few human studies to date have focused on stroma. Here, we performed gene expression profiling of laser capture microdissected normal non-neoplastic prostate epithelial tissue and compared it to non-transformed and neoplastic low-grade and high-grade prostate epithelial tissue from radical prostatectomies, each with its immediately surrounding stroma.

View Article and Find Full Text PDF

Background: Absence of pathologic complete response (pCR) to neoadjuvant chemotherapy (NACT) correlates with poor long-term survival in patients with triple negative breast cancer (TNBC). These incomplete treatment responses are likely determined by mechanisms that enable cancer cells to resist being killed. However, the detailed characterization of a drug-resistant cancer cell state in residual TNBC tissue after NACT has remained elusive.

View Article and Find Full Text PDF

The estrogen receptor (ER) drives the growth of most luminal breast cancers and is the primary target of endocrine therapy. Although ER blockade with drugs such as tamoxifen is very effective, a major clinical limitation is the development of endocrine resistance especially in the setting of metastatic disease. Preclinical and clinical observations suggest that even following the development of endocrine resistance, ER signaling continues to exert a pivotal role in tumor progression in the majority of cases.

View Article and Find Full Text PDF

Metabolite profiling has significantly contributed to a deeper understanding of the biochemical metabolic networks and pathways in cancer cells. Metabolomics-based biomarker discovery would greatly benefit from the ability to interrogate retrospective annotated clinical specimens archived as formalin-fixed, paraffin-embedded (FFPE) material. Mass spectrometry-based metabolomic analysis was performed in matched frozen and FFPE human prostate cancers as well as isogenic prostate cancer cell lines.

View Article and Find Full Text PDF