Publications by authors named "Clovis Darrigan"

The electronic structure of Blatter radicals and a series of C(10)-substituted derivatives of 2-phenyl-3H-[1,2,4]triazino[5,6,1-kl]phenoxazin-3-yl (planar Blatter radicals) containing H, F, Cl, Br, CN, CF3 and OMe substituents was investigated by gas phase UV-photoelectron spectroscopy. The energy of the SOMO of the radicals, determined to be about 6.5 eV, was correlated with their electrochemical oxidation potentials, E0/+11/2, relative to the Fc/Fc+ couple in CH2Cl2 giving the correction of 6.

View Article and Find Full Text PDF

The first example of a BN-doped cycloparaphenylene BN-[10]CPP was synthesized and characterized. Its reactivity and photophysical properties were evaluated in direct comparison to its carbonaceous analogues Mes-[10]CPP and [10]CPP. While the photophysical properties of BN-[10]CPP remains similar to its carbonaceous analogues, the electronic structure changes associated with the introduction of a 1,2-azaborine BN heterocycle into a CPP scaffold enables facile and selective late-stage functionalizations that cannot be accomplished with carbonaceous CPPs.

View Article and Find Full Text PDF

A BN indole-containing aromatic scaffold has been synthesized and the cation-π binding ability characterized by nuclear magnetic resonance (NMR) monitored titrations. The resulting chemical shifts were analyzed using a non-linear curve fitting procedure and the extracted association constants (Ka's) compared with the natural indole scaffold. Computations were also performed to support our findings.

View Article and Find Full Text PDF

Colorless crystalline 2,6-dibromo-4,8-dimethyl-1,3,5,7-tetraphenylbenzobis(diazaborole) 4 resulted from the cyclocondensation of 3,6-dimethyl-1,2,4,5-tetraphenylaminobenzene 3d with two equivalents of boron tribromide in the presence of calcium hydride. Synthesis of the dark-red crystalline 2-bromo-N,N'-bis(diisopropylphenyl)acenaphtho-1,3,2-diazaborole 7 was effected by the cyclocondensation of 1,2-bis(N-2',6'-diisopropylphenylimino)acenaphthene (5) and boron tribromide with subsequent sodium amalgam reduction of the initially formed burgundy red diazaborolium salt 6. Compounds 4, 6 and 7 are characterised by elemental analyses, H, B and C NMR spectroscopy, as well as by single X-ray diffraction studies.

View Article and Find Full Text PDF

Hydrazine-boranes (HNNH·BH and HB·NHNH·BH) have been proposed for the storage of hydrogen, but these compounds have not created scope for extensive research works as ammonia- and methylamine-boranes have made these last decades. In the exciting research devoted to energy storage with environmentally friendly processes, hydrazine-borane, hydrazine-bisborane, and their simply substituted derivatives could provide a satisfactory response for hydrogen production and recyclability of the formed products. To date, knowledge of the physical and chemical properties of these compounds is still scarce.

View Article and Find Full Text PDF

9a,9-BN anthracene was synthesized using a simple three-step sequence involving intramolecular electrophilic borylation of 2-benzylpyridines. The same procedure can be applied to yield a number of substituted 9a,9-BN anthracenes. Spectroscopic characterization of the parental compound (UV-photoelectron spectroscopy, UV-vis absorption/emission) shows an electronic structure more similar to that of a larger conjugated system rather than anthracene, the direct all-carbon analogue.

View Article and Find Full Text PDF

Alkyl and aryl isoselenocyanates are well known intermediates in the synthesis of various organoselenium compounds, but the knowledge of the physicochemical properties of simple unsaturated derivatives is still fragmentary. Vinyl-, 2-propenyl-, and cyclopropyl isoselenocyanates have been prepared by reaction of selenium in powder with the corresponding isocyanides. The isoselenocyanates of this series, with a variable distance between the N═C═Se group and the unsaturated or pseudounsaturated group, have been studied by UV-photoelectron spectroscopy and quantum-chemical calculations.

View Article and Find Full Text PDF

The importance of having reliable calculation tools to interpret and predict the electronic properties of BN-aromatics is directly linked to the growing interest for these very promising new systems in the field of materials science, biomedical research, or energy sustainability. Ionization energy (IE) is one of the most important parameters to approach the electronic structure of molecules. It can be theoretically estimated, but in order to evaluate their persistence and propose the most reliable tools for the evaluation of different electronic properties of existent or only imagined BN-containing compounds, we took as reference experimental values of ionization energies provided by ultra-violet photoelectron spectroscopy (UV-PES) in gas phase-the only technique giving access to the energy levels of filled molecular orbitals.

View Article and Find Full Text PDF

The least stable isomer of the parental BN naphthalene series has been synthesized in a simple four-step sequence. Its experimental electronic structure characterization via UV-PES, cyclic voltammetry, and UV-vis spectroscopy in direct comparison with three other known BN naphthalene isomers has established two guiding principles for predicting the electronic structures of BN acene compounds: (1) Orientational BN isomers have similar HOMO-LUMO gaps. (2) For each pair of orientational BN isomers, the more thermodynamically stable compound has the lower HOMO energy.

View Article and Find Full Text PDF

Cyanohydrins are usually formed by addition of hydrogen cyanide to aldehydes or ketones while the elimination of HCN from cyanohydrins is easily observed upon heating. The low thermal stability of these highly boiling compounds leads to difficult studies in the gas phase where partial or complete decomposition is usually observed. Consequently, the reported physicochemical properties of such compounds in the gas phase are still scarce.

View Article and Find Full Text PDF

Experimental and theoretical studies have been performed to demonstrate the high performance of the novel piezoelectric material GaAsO(4). Hydrothermally grown single crystals of α-quartz phase GaAsO(4) were studied by Brillouin spectroscopy to determine elastic constants. Experimentally obtained values of C(11), C(66), C(33), C(44), C(14) and C(12) are 59.

View Article and Find Full Text PDF

We present the development of a new parallel computer code (P_Anhar_v1.0) to calculate the vibrational spectrum of medium size molecules using a variational algorithm. The method is applied to the determination of a complete quartic anharmonic force field (B3LYP/cc-pVTZ) for methyllithium, leading to a new interpretation of experimental data.

View Article and Find Full Text PDF

The finite field approach has been implemented in the periodic ab initio CRYSTAL program and been used for calculating the dielectric constants of crystalline LiF and MgO (FCC structure) and BeO (wurtzite structure). To maintain the periodicity along the applied field direction, a "sawtooth" potential is used in conjunction with a supercell scheme. Supercells four to five times longer than the primitive cell in the direction of the applied field provide well-converged results.

View Article and Find Full Text PDF