Plastic recycling strategies to combat rapidly increasing waste buildup are of utmost environmental importance. Chemical recycling to monomers has emerged as a powerful strategy that enables infinite recyclability through depolymerization. However, methods for chemical recycling to monomers typically rely on bulk heating of polymers, which leads to unselective depolymerization in complex polymer mixtures and the formation of degradation byproducts.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2022
The ability to 3D print structures with low-intensity, long-wavelength light will broaden the materials scope to facilitate inclusion of biological components and nanoparticles. Current materials limitations arise from the pervasive absorption, scattering, and/or degradation that occurs upon exposure to high-intensity, short-wavelength (ultraviolet) light, which is the present-day standard used in light-based 3D printers. State-of-the-art techniques have recently extended printability to orange/red light.
View Article and Find Full Text PDF