Publications by authors named "Clotilde Philippe"

1,1,4,4-Tetracyanobutadienes (TCBDs) bearing a large diversity of fluorophores were prepared following a multi-step synthesis. In a crucial last step, all compounds were obtained from the corresponding ynamides, which were particularly suitable for the formation of the TCBDs in the presence of tetracyanoethylene via a [2+2] cycloaddition/retroelectrocyclization step (CA-RE). Several fluorenyl derivatives in addition to phenanthrenyl and terphenyl ones provided ynamide-based TCBDs affording remarkable emission properties covering a large range of wavelengths.

View Article and Find Full Text PDF

The synthesis and characterization of four new tetracyanobutadiene (TCBD) derivatives (1, 3c and 4b-c) incorporating tosylamido and 4-triphenylamino moieties are reported. Along with those of five closely related or differently branched TCBDs derivatives (2, 3a-b, 4c and 5), their linear and (third-order) nonlinear optical properties were investigated by electronic absorption spectroscopy and Z-scan measurements. Among these compounds, the tri-branched compounds 3c and 5 are the most active two-photon absorbers, with effective cross-sections of 275 and 350 GM at 900 nm, respectively.

View Article and Find Full Text PDF

Two small 1,1,4,4-tetracyanobutadiene-functionalized chromophores were obtained by careful leverage of the regioselectivity of the cycloaddition reaction of tetracyanoethylene with anthracene-ynamide derivatives, inducing either a [2 + 2] or a [4 + 2] Diels-Alder process. DFT calculations unraveled the mechanism of the [2 + 2] cycloaddition-retroelectrocyclization reaction sequence with ynamides and elucidated the differing mechanisms in the two substrates. The synthesized dyes presented panchromatic absorption extending into the near-IR and far-red/near-IR photoluminescence in the solid state up to 1550 nm.

View Article and Find Full Text PDF

Two 1,1,4,4-tetracyanobutadiene (TCBD) derivatives were prepared by [2+2]cycloaddition-retroelectrocyclization from ynamides bearing either a pyrene (1) or a perylene unit (2). In addition to panchromatic absorptions in 2, in the solid state, both compounds unexpectedly display NIR photoluminescence that could be detected up to about 1350 nm.

View Article and Find Full Text PDF