Objective: While facing personal protective equipment (PPE) shortages during the COVID-19 pandemic, several institutions looked to PPE decontamination and reuse options. This study documents the effect of two hydrogen peroxide treatments on filtration efficiency and fit tests as well as the side effects for volunteers after the decontamination of N95 filtering facepiece respirators (FFRs). We also propose an efficient and large-scale treatment protocol that allows for the traceability of this protective equipment in hospitals during PPE shortages.
View Article and Find Full Text PDFObjectives: The high demand of filtering facepiece respirators (FFRs) worldwide during the period of the COVID-19 pandemic has led to a critical situation for decision-makers regarding their supply. After authorizing the use of FFRs certified by other regions of the world, decision-makers in many countries have published alerts, particularly concerning the 'KN95' type.
Methods: This paper investigated the filtration performance of different FFRs using an experimental setup already employed during several studies on FFRs filtration performance.
It is necessary to investigate the efficiencies of filtering facepiece respirators (FFRs) exposed to ultrafine particles (UFPs) for long periods of time, since the particle loading time may potentially affect the efficiency of FFRs. This article aims to investigate the filtration efficiency for a model of electrostatic N95 FFRs with constant and 'inhalation-only' cyclic flows, in terms of particle loading time effect, using different humidity conditions. Filters were exposed to generated polydisperse NaCl particles.
View Article and Find Full Text PDF