Two-dimensional transition-metal dichalcogenides have attracted significant attention because of their unique intrinsic properties, such as high transparency, good flexibility, atomically thin structure, and predictable electron transport. However, the current state of device performance in monolayer transition-metal dichalcogenide-based optoelectronics is far from commercialization, because of its substantial strain on the heterogeneous planar substrate and its robust metal deposition, which causes crystalline damage. In this study, we show that strain-relaxed and undamaged monolayer WSe can improve a device performance significantly.
View Article and Find Full Text PDFZinc oxide (ZnO) is a stable, direct bandgap semiconductor emitting in the UV with a multitude of technical applications. It is well known that ZnO emission can be shifted into the green for visible light applications through the introduction of defects. However, generating consistent and efficient green emission through this process is challenging, particularly given that the chemical or atomic origin of the green emission in ZnO is still under debate.
View Article and Find Full Text PDFMgH2, Mg-Ni-H and Mg-Fe-H nanoparticles inserted into ordered mesoporous carbon templates have been synthesized by decomposition of organometallic precursors under hydrogen atmosphere and mild temperature conditions. The hydrogen desorption properties of the MgH2 nanoparticles are studied by thermo-desorption spectroscopy. The particle size distribution of MgH2, as determined by TEM, is crucial for understanding the desorption properties.
View Article and Find Full Text PDF