The knowledge of the subcellular location of a protein is a valuable source of information in genomics, drug design, and various other theoretical and analytical perspectives of bioinformatics. Due to the expensive and time-consuming nature of experimental methods of protein subcellular location determination, various computational methods have been developed for subcellular localization prediction. We introduce "SCLpred-MEM," an ab initio protein subcellular localization predictor, powered by an ensemble of Deep N-to-1 Convolutional Neural Networks (N1-NN) trained and tested on strict redundancy reduced datasets.
View Article and Find Full Text PDF