Structure-activity relationship studies involving N-aryl-3-trifluoromethyl pyrido[1,2- a]benzimidazoles (PBI) identified several compounds possessing potent in vitro activities against the asexual blood, liver, and gametocyte stages of the Plasmodium parasite with no cross-resistance to chloroquine. Frontrunner lead compounds with good in vitro absorption, distribution, metabolism, and excretion (ADME) profiles were subjected to in vivo proof-of-concept studies in NMRI mice harboring the rodent P. berghei infection.
View Article and Find Full Text PDFFurther structure-activity relationship (SAR) studies on the recently identified pyrido[1,2-a]benzimidazole (PBI) antimalarials have led to the identification of potent, metabolically stable compounds with improved in vivo oral efficacy in the P. berghei mouse model and additional activity against parasite liver and gametocyte stages, making them potential candidates for preclinical development. Inhibition of hemozoin formation possibly contributes to the mechanism of action.
View Article and Find Full Text PDFThere is an urgent need for the development of new antimalarial compounds. As a result of a phenotypic screen, several compounds with potent activity against the parasite Plasmodium falciparum were identified. Characterization of these compounds is discussed, along with approaches to optimise the physicochemical properties.
View Article and Find Full Text PDFPreviously reported pyrrolones, such as TDR32570, exhibited potential as antimalarial agents; however, while these compounds have potent antimalarial activity, they suffer from poor aqueous solubility and metabolic instability. Here, further structure-activity relationship studies are described that aimed to solve the developability issues associated with this series of compounds. In particular, further modifications to the lead pyrrolone, involving replacement of a phenyl ring with a piperidine and removal of a potentially metabolically labile ester by a scaffold hop, gave rise to derivatives with improved in vitro antimalarial activities against Plasmodium falciparum K1, a chloroquine- and pyrimethamine-resistant parasite strain, with some derivatives exhibiting good selectivity for parasite over mammalian (L6) cells.
View Article and Find Full Text PDFIn the pursuit of new antimalarial leads, a phenotypic screening of various commercially sourced compound libraries was undertaken by the World Health Organisation Programme for Research and Training in Tropical Diseases (WHO-TDR). We report here the detailed characterization of one of the hits from this process, TDR32750 (8a), which showed potent activity against Plasmodium falciparum K1 (EC(50) ~ 9 nM), good selectivity (>2000-fold) compared to a mammalian cell line (L6), and significant activity against a rodent model of malaria when administered intraperitoneally. Structure-activity relationship studies have indicated ways in which the molecule could be optimized.
View Article and Find Full Text PDFNew chemical entities are desperately needed that overcome the limitations of existing drugs for neglected diseases. Screening a diverse library of 10,000 drug-like compounds against 7 neglected disease pathogens resulted in an integrated dataset of 744 hits. We discuss the prioritization of these hits for each pathogen and the strong correlation observed between compounds active against more than two pathogens and mammalian cell toxicity.
View Article and Find Full Text PDFA novel class of antimalarial pyrido[1,2-a]benzimidazoles were synthesized and evaluated for antiplasmodial activity and cytotoxicity following hits identified from screening commercially available compound collections. The most active of these, TDR86919 (4c), showed improved in vitro activity vs the drug-resistant K1 strain of Plasmodium falciparum relative to chloroquine (IC(50) = 0.047 μM v 0.
View Article and Find Full Text PDFA series of diaryl ether substituted 4-pyridones have been identified as having potent antimalarial activity superior to that of chloroquine against Plasmodium falciparum in vitro and murine Plasmodium yoelii in vivo. These were derived from the anticoccidial drug clopidol through a systematic study of the effects of varying the side chain on activity. Relative to clopidol the most active compounds show >500-fold improvement in IC50 for inhibition of P.
View Article and Find Full Text PDFIcofungipen is a cyclic beta-amino acid being development by PLIVA, under license from Bayer, for the potential oral treatment of fungal infection. As of September 2002, the first phase II efficacy study was underway.
View Article and Find Full Text PDFDB-289, an oral diamidoxime prodrug of DB-75 from the University of North Carolina, Georgia State University, Auburn University and Duke University, is being developed by Immtech International as a potential treatment for Pneumocystis carinii pneumonia (PCP), tuberculosis, trypanosomiasis and malaria.
View Article and Find Full Text PDFSitamaquine (WR-6026) is an orally active 8-aminoquinoline analog in development by the Walter Reed Army Institute, in collaboration with GlaxoSmithKline (formerly SmithKline Beecham), for the potential treatment of visceral leishmaniasis. Phase III trials for the treatment of visceral leishmaniasis had been initiated by March 2002, at which time GlaxoSmithKline hoped to file an MAA in 2003. By 1999, the compound had also undergone phase I trials in HIV-infected individuals for the treatment of Pneumocystis carinii infection.
View Article and Find Full Text PDF