Remote sensing observations have shown that the far side of the Moon (lunar farside) has different geology and rock composition to those of the nearside, including the abundances of potassium, rare earth elements, and phosphorus (collectively known as KREEP). The Chang'e-6 (CE-6) spacecraft collected samples from the South Pole-Aitken (SPA) basin on the farside and brought them to Earth. We used lead-lead and rubidium-strontium isotope systems to date low-titanium basalt in a CE-6 sample, finding a consistent age of 2830 (±5) million years.
View Article and Find Full Text PDFCommun Earth Environ
September 2024
Impact glasses found in lunar soils provide a possible window into the impact history of the inner solar system. However, their use for precise reconstruction of this history is limited by an incomplete understanding of the physical mechanisms responsible for their origin and distribution and possible relationships to local and regional geology. Here, we report U-Pb isotopic dates and chemical compositions of impact glasses from the Chang'e-5 soil and quantitative models of impact melt formation and ejection that account for the compositions of these glasses.
View Article and Find Full Text PDFOrbital data indicate that the youngest volcanic units on the Moon are basalt lavas in Oceanus Procellarum, a region with high levels of the heat-producing elements potassium, thorium, and uranium. The Chang’e-5 mission collected samples of these young lunar basalts and returned them to Earth for laboratory analysis. We measure an age of 1963 ± 57 million years for these lavas and determine their chemical and mineralogical compositions.
View Article and Find Full Text PDFDetermining the presence or absence of a past long-lived lunar magnetic field is crucial for understanding how the Moon's interior and surface evolved. Here, we show that Apollo impact glass associated with a young 2 million-year-old crater records a strong Earth-like magnetization, providing evidence that impacts can impart intense signals to samples recovered from the Moon and other planetary bodies. Moreover, we show that silicate crystals bearing magnetic inclusions from Apollo samples formed at ∼3.
View Article and Find Full Text PDFThe Cretaceous-Paleogene (K-Pg) mass extinction is marked globally by elevated concentrations of iridium, emplaced by a hypervelocity impact event 66 million years ago. Here, we report new data from four independent laboratories that reveal a positive iridium anomaly within the peak-ring sequence of the Chicxulub impact structure, in drill core recovered by IODP-ICDP Expedition 364. The highest concentration of ultrafine meteoritic matter occurs in the post-impact sediments that cover the crater peak ring, just below the lowermost Danian pelagic limestone.
View Article and Find Full Text PDFThe Joint Workshop on Induced Special Regions convened scientists and planetary protection experts to assess the potential of inducing special regions through lander or rover activity. An Induced Special Region is defined as a place where the presence of the spacecraft could induce water activity and temperature to be sufficiently high and persist for long enough to plausibly harbor life. The questions the workshop participants addressed were: (1) What is a safe stand-off distance, or formula to derive a safe distance, to a purported special region? (2) Questions about RTGs (Radioisotope Thermoelectric Generator), other heat sources, and their ability to induce special regions.
View Article and Find Full Text PDFDirect analysis of the composition of Mars is possible through delivery of meteorites to Earth. Martian meteorites include ∼165 to 2400 Ma shergottites, originating from depleted to enriched mantle sources, and ∼1340 Ma nakhlites and chassignites, formed by low degree partial melting of a depleted mantle source. To date, no unified model has been proposed to explain the petrogenesis of these distinct rock types, despite their importance for understanding the formation and evolution of Mars.
View Article and Find Full Text PDFThe Cretaceous-Paleogene boundary approximately 65.5 million years ago marks one of the three largest mass extinctions in the past 500 million years. The extinction event coincided with a large asteroid impact at Chicxulub, Mexico, and occurred within the time of Deccan flood basalt volcanism in India.
View Article and Find Full Text PDFThe effect of natural organic matter (NOM) on arsenic adsorption by a commercial available TiO(2) (Degussa P25) in various simulated As(III)-contaminated raw waters was examined. Five types of NOM that represent different environmental origins were tested. Batch adsorption experiments were conducted under anaerobic conditions and in the absence of light.
View Article and Find Full Text PDFEnviron Sci Technol
February 2007
The emission of platinum-group elements (PGEs) from catalytic converters has led to increased environmental abundances of Pt, Pd, and Rh; however, little is known about the environmental effects and fate of these metals. Organic ligands found in soils have the potential to increase the mobility of PGEs and potentially increase the bioavailability of the metals. Here, we assessed the abilities of microbially produced iron-chelating ligands (siderophores) to complex with the PGEs.
View Article and Find Full Text PDFThe Hawaiian-Emperor hotspot track has a prominent bend, which has served as the basis for the theory that the Hawaiian hotspot, fixed in the deep mantle, traced a change in plate motion. However, paleomagnetic and radiometric age data from samples recovered by ocean drilling define an age-progressive paleolatitude history, indicating that the Emperor Seamount trend was principally formed by the rapid motion (over 40 millimeters per year) of the Hawaiian hotspot plume during Late Cretaceous to early-Tertiary times (81 to 47 million years ago). Evidence for motion of the Hawaiian plume affects models of mantle convection and plate tectonics, changing our understanding of terrestrial dynamics.
View Article and Find Full Text PDF