Publications by authors named "Clive McFarland"

The ability to create thick tissues is a major tissue engineering challenge, requiring the development of a suitable vascular supply. Current trends are seeing the utilization of cells seeded into hybrid matrix/scaffold systems to create in vitro vascular analogues. Approaches that aim to create vasculature in vitro include the use of biological extracellular matrices such as collagen hydrogels, porous biodegradable polymeric scaffolds with macro- and micro-lumens and micro-channels, co-culture of cells, incorporation of growth factors, culture in dynamic bioreactor environments, and combinations of these.

View Article and Find Full Text PDF

Contraction plays a major role in wound healing and is inevitably mediated through the mechanical interaction of fibroblast cytoskeleton and integrins with their extracellular matrix ligands. Cell-matrix attachment is critical for such events. In human dermal fibroblasts most such interactions are mediated by the beta1-type integrins.

View Article and Find Full Text PDF

Four plasma proteins have been shown to be able to mediate platelet adhesion to synthetic materials when they are adsorbed as purified proteins: fibrinogen (Fg), fibronectin (Fn), vitronectin (Vn), and von Willebrand factor (vWF). Among them, Fg is thought to play a leading role in mediating platelet adhesion to plasma-preadsorbed biomaterials, but this has been established for only three types of materials so far in our laboratory. Furthermore, the role of Fn, Vn, and vWF in mediating platelet adhesion to plasma-preadsorbed surfaces is still unclear.

View Article and Find Full Text PDF