Publications by authors named "Clive Jones"

Identifying microbial fossils in the rock record is a difficult task because they are often simple in morphology and can be mimicked by non-biological structures. Biosignatures are essential for identifying putative fossils as being definitively biological in origin, but are often lacking due to geologic effects which can obscure or erase such signs. As such, there is a need for robust biosignature identification techniques.

View Article and Find Full Text PDF
Article Synopsis
  • Secondary ion mass spectrometry data collected with electron multiplier detectors requires correction for the quasi-simultaneous arrival (QSA) effect, but observed experimental values for the QSA coefficient, β, generally fall between 0.6 and 1.0, contrary to the expected invariant value of 0.5.
  • A new statistical model was created that integrates ion emission and attenuation to explain the variability in measured β values, using a combination of Poisson and binomial statistics to predict the behavior of secondary ion emissions.
  • The findings suggest that the emission of one ion affects the likelihood of forming another, indicating that secondary ion emissions are interconnected rather than independent, as demonstrated by the consistent deviation of measured β from the expected value of 0
View Article and Find Full Text PDF

Uncovering and understanding the chemical and fossil record of ancient life is crucial to understanding how life arose, evolved, and distributed itself across Earth. Potential signs of ancient life, however, are often challenging to establish as definitively biological and require multiple lines of evidence. Hydrothermal silica deposits may preserve some of the most ancient evidence of life on Earth, and such deposits are also suggested to exist on the surface of Mars.

View Article and Find Full Text PDF

Extracellular electron uptake (EEU) is the ability of microbes to take up electrons from solid-phase conductive substances such as metal oxides. EEU is performed by prevalent phototrophic bacterial genera, but the electron transfer pathways and the physiological electron sinks are poorly understood. Here we show that electrons enter the photosynthetic electron transport chain during EEU in the phototrophic bacterium Rhodopseudomonas palustris TIE-1.

View Article and Find Full Text PDF

Rationale: Sulfur isotope ratio measurements of bulk sulfide from marine sediments have often been used to reconstruct environmental conditions associated with their formation. In situ microscale spot analyses by secondary ion mass spectrometry (SIMS) and laser ablation multiple-collector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS) have been utilized for the same purpose. However, these techniques are often not suitable for studying small (≤10 μm) grains or for detecting intra-grain variability.

View Article and Find Full Text PDF

Boom-bust dynamics - the rise of a population to outbreak levels, followed by a dramatic decline - have been associated with biological invasions and offered as a reason not to manage troublesome invaders. However, boom-bust dynamics rarely have been critically defined, analyzed, or interpreted. Here, we define boom-bust dynamics and provide specific suggestions for improving the application of the boom-bust concept.

View Article and Find Full Text PDF

Rationale: IMS 7f-GEO isotope ratio applications increasingly involve analyses (e.g., S or O isotopes, coupled with primary ion currents <30 pA) for which quasi-simultaneous arrival (QSA) could compromise precision and accuracy of data.

View Article and Find Full Text PDF

Here we utilize a combination of genetic data, oceanographic data, and local ecological knowledge to assess connectivity patterns of the ornate spiny lobster Panulirus ornatus (Fabricius, 1798) in the South-East Asian archipelago from Vietnam to Australia. Partial mitochondrial DNA control region and 10 polymorphic microsatellites did not detect genetic structure of 216 wild P. ornatus samples from Australia, Indonesia and Vietnam.

View Article and Find Full Text PDF

Rates of biodiversity loss are higher in freshwater ecosystems than in most terrestrial or marine ecosystems, making freshwater conservation a priority. However, prioritization methods are impeded by insufficient knowledge on the distribution and conservation status of freshwater taxa, particularly invertebrates. We evaluated the extinction risk of the world's 590 freshwater crayfish species using the IUCN Categories and Criteria and found 32% of all species are threatened with extinction.

View Article and Find Full Text PDF

Background: The 2008-2009 subprime mortgage crisis was catastrophic, not only for the global economy but for families across the social spectrum. The resultant economic upheaval threatened the livelihoods, well-being, and health of many citizens, who were often unsure where to turn for help. At this critical juncture, public broadcasting stations worked to connect viewers to support resources through 2-1-1.

View Article and Find Full Text PDF

Spatial heterogeneity in predation risk can ameliorate impacts on prey populations, particularly for prey of generalists. Spatially heterogeneous risk implies the existence of refugia, and the spatial scale of those refugia and their persistence over time affect whether prey can avoid predation by aggregating therein. Our objective was to quantify the magnitude, spatial scale, and temporal persistence of heterogeneity in risk of predation by white-footed mice (Peromyscus leucopus), an abundant generalist predator of gypsy moths (Lymantria dispar) and songbirds.

View Article and Find Full Text PDF

Why do organisms make the types of chemicals that they do? Evolutionary theory tells us that individuals within populations will be subject to mutation and that some of those mutations will be enzyme variants that make new chemicals. A mutant making a novel chemical for that species will only survive in the population if the 'cost' of making the new chemical is outweighed by the benefits that result from making that molecule. The benefits, or adverse consequences, that a novel chemical X can confer to the individual organism are not a property of the simple existence of X in the cell but can be traced to one of the multiple properties that X will possess because of its molecular structure.

View Article and Find Full Text PDF

Apterous populations of Chaitophorous populicola Thomas (Homoptera: Aphididae) appear to track Eastern cottonwood (Populus deltoides Bartr.) leaf development. Few aphids occur on mature leaves.

View Article and Find Full Text PDF

Phenotypic plasticity in response to environmental variation occurs at all levels of organization and across temporal scales within plants. However, the magnitude and functional significance of plasticity is largely unexplored in perennial species. We measured the plasticity of leaf- and shoot-level physiological, morphological and developmental traits in nursery-grown Populus deltoides Bartr.

View Article and Find Full Text PDF

Organisms in highly suitable sites generally produce more offspring, and offspring can inherit this suitability by not dispersing far. This combination of spatial selection and spatial inheritance acts to bias the distribution of organisms toward suitable sites and thereby increase mean fitness (i.e.

View Article and Find Full Text PDF

The ecosystem engineering concept focuses on how organisms physically change the abiotic environment and how this feeds back to the biota. While the concept was formally introduced a little more than 10 years ago, the underpinning of the concept can be traced back to more than a century to the early work of Darwin. The formal application of the idea is yielding new insights into the role of species in ecosystems and many other areas of basic and applied ecology.

View Article and Find Full Text PDF

Previously we found that cloned cottonwood saplings (Populus deltoides) grew twice as large in New York, New York, USA, compared to surrounding rural environments and that soils, temperature, CO2, nutrient deposition, and microclimatic variables could not account for the greater urban plant biomass. Correlations between final season biomass and cumulative O3 exposures, combined with twofold growth reductions in an open-top chamber experiment provided strong evidence that higher cumulative O3 exposures in rural sites reduced growth in the country. Here, we assess the field gas exchange, growth and development, and allocation responses underlying the observed growth differences and compare them with isolated O3 responses documented in the open-top chamber experiment.

View Article and Find Full Text PDF

Ecosystem engineers affect other organisms by creating, modifying, maintaining or destroying habitats. Despite widespread recognition of these often important effects, the ecosystem engineering concept has yet to be widely used in ecological applications. Here, we present a conceptual framework that shows how consideration of ecosystem engineers can be used to assess the likelihood of restoration of a system to a desired state, the type of changes necessary for successful restoration and how restoration efforts can be most effectively partitioned between direct human intervention and natural ecosystem engineers.

View Article and Find Full Text PDF

A simple evolutionary model is presented which explains why organisms produce so many natural products, why so many have low biological activity, why enzymes involved in natural product synthesis have the properties they do and why natural product metabolism is shaped as it is.

View Article and Find Full Text PDF

Plants in urban ecosystems are exposed to many pollutants and higher temperatures, CO2 and nitrogen deposition than plants in rural areas. Although each factor has a detrimental or beneficial influence on plant growth, the net effect of all factors and the key driving variables are unknown. We grew the same cottonwood clone in urban and rural sites and found that urban plant biomass was double that of rural sites.

View Article and Find Full Text PDF

Ecosystem engineering - the physical modification of habitats by organisms - has been proposed as an important mechanism for maintaining high species richness at the landscape scale by increasing habitat heterogeneity. Dams built by beaver (Castor canadensis) dramatically alter riparian landscapes throughout much of North America. In the central Adirondacks, New York, USA, ecosystem engineering by beaver leads to the formation of extensive wetland habitat capable of supporting herbaceous plant species not found elsewhere in the riparian zone.

View Article and Find Full Text PDF

We examined whether the effects of elevated CO on growth of 1-year old Populus deltoides saplings was a function of the assimilation responses of particular leaf developmental stages. Saplings were grown for 100 days at ambient (approximately 350 ppm) and elevated (ambient + 200 ppm) CO in forced-air greenhouses. Biomass, biomass distribution, growth rates, and leaf initiation and expansion rates were unaffected by elevated CO.

View Article and Find Full Text PDF

Isoprene emission from plants is one of the principal ways in which plant processes alter atmospheric chemistry. Despite the importance of this process, few long-term controls over basal emission rates have been identified. Stress-induced changes in carbon allocation within the entire plant, such as those produced by defoliation, have not been examined as potential mechanisms that may control isoprene production and emission.

View Article and Find Full Text PDF