Patients with cancer often take many different classes of drugs to treat the effects of their malignancy and the side effects of treatment, as well as their comorbidities. The potential for drug-drug interactions that may affect the efficacy of anticancer treatment is high, and a major source of such interactions is competition for the drug-metabolizing enzymes, cytochromes P450 (P450s). We have examined a series of 20 drugs commonly prescribed to cancer patients to look for potential interactions via CYP2D6.
View Article and Find Full Text PDFWe have previously shown that Phe(120), Glu(216), and Asp(301) in the active site of cytochrome P450 2D6 (CYP2D6) play a key role in substrate recognition by this important drug-metabolizing enzyme (Paine, M. J., McLaughlin, L.
View Article and Find Full Text PDFThe transcellular transport of many compounds, which cannot readily cross the lipid bilayer, is mediated by drug uptake and efflux transporters. Human OATP1B1 and MRP2 have been implicated in the hepato-biliary transport of many endogenous and exogenous compounds. Here, we have established epithelial porcine kidney LLC-PK1 derived cell lines, that express both transporters in a polarized fashion, as a model to predict hepato-biliary transport.
View Article and Find Full Text PDF